CHARACTERIZATION OF POLYMER AND THEIR EFFECT ON PERMANENT DEFORMATION OF FLEXIBLE PAVEMENT.

Touseef Ahmad

Master student at, Iqra National University, Peshawar.
engr.touseef92@gmail.com

Abstract

The Area where the temperature is high the flexible pavement in mood of permanent deformation represent serious problem. To solve this serious problem various modifying asphalt binder by polymer are check out for the purpose of devoted the issue. The resolve this serious issue we can use four type of polymer to reduce the permanent deformation, these polymers are Polyethylene Wax (PEW), Styrene Butadiene Rubber (SBR), Ethylene Propylene Dien Monomer (EPDM) and Ethylene Vinyl Acetate (EVA). The prepared mixtures composed of 4.9 % of 40/50 asphalt binder, 12.5 mm nominal aggregate maximum size and limestone dust as filler. The permanent and resilient strains have been recorded when the cylindrical specimens, 101.6 mm in diameter and 203.2 mm in height, tested by repeated loading system. The main conclusions exhibit that SBR and EPDM with the same concentration (15 % by weight of asphalt binder) reduced the permanent deformation by 30.20 % and 30.46 % respectively. Although, the PEW and EVA reduced permanent deformation by lower values, 13.24 % and 17.35 % respectively, but the incremental percentage of their action are higher. The influences of testing temperature and stress level on permanent deformation were investigated. Linear regression model was established to correlate the values of permanent deformation and the resilient modulus of asphalt mixtures.

Keywords – Asphalt Pavement, Permanent Deformation, Polymers, Resilient Modulus
1. INTRODUCTION

At the recent age which is the technology age in which the transportation engineering is much developed, so for controlling the high traffic load polymer modified asphalt binder are become more widespread in road construction. Furthermore, many efforts are devoted toward modifying asphalt mixtures by various types of polymers to enhance the resistance of asphalt paving to high and low temperatures consequences, allowing reduction in common failure mechanisms as rutting and cracking.

Permanent deformation termed as rutting is one of the most considerable load-associated distress types affecting the performance of asphalt concrete pavement [1].

Based on comprehensive survey carried out by National Highway Authority in 2003, rutting was considered to be the first ranking distress mechanisms in flexible pavement, followed by fatigue cracking and then by thermal cracking [2]. depicted that rutting usually appears as longitudinal depression in the wheel path accompanied by small upheavals to the side [3], revealed that repetitive action of heavy traffic loads caused an accumulation of permanent deformations in asphalt pavement.

An extensive work in this field has been carried out by [4], they reported that permanent deformation expressed by rutting occupied a major concern for at least two reasons; ruts trap water and hydroplaning which represent threat particularly for passenger cars, and ruts that develop in depth make steering increasingly become difficult, leading to major safety concerns.

[5] as well as many other researchers deduced that rutting decreases the useful service life of the pavement and by affecting vehicle handling characteristics; it creates serious hazards for highway users, consequently, it can decrease drainage capacity of pavement structure resulting in accumulation of water. Another negative effect of permanent deformation as declared by [6], is the reduction of pavement thickness, which boosts the occurrence of pavement failures through fatigue cracking.

1.1.OBJECTIVE OF THE STUDY

The objective of the study is concluded are,

- To utilizing different types of polymers in order to improve the resistance of asphalt mixtures against permanent deformation.
• For this purpose, four types of polymers have been added by different concentrations to the asphalt binder to compose mixture that will be tested under repeated loading system to record the permanent deformation.

• These synthetic polymers are Polyethylene Wax (PEW), Styrene Butadiene Rubber (SBR), Ethylene Propylene Dien Monomer (EPDM) and Ethylene Vinyl Acetate (EVA).

2. LITERATURE REVIEW

Basically, the mechanism of polymer is a long string (or net) of small molecules connected together through chemical bonds. The chain connectivity of the polymer can give the chain great strength and at the same time, they can be very flexible [6].

[7] conducted laboratory track test to determine the effect of Styrene Butadiene Rubber (SBR) addition on rutting resistance at 40 °C and 50 °C; their work results deducted that unmodified asphalt mixture has higher rutting rate comparing to SBR modified asphalt mixtures. [8] performed testing to evaluate the SBR modified asphalt rutting, the SBR was mixed with an optimum asphalt content of 6 % by total mix weight, the mix was applied at four different sections by different residual rate of asphalt and the results remarked that flushing is less in the section where less asphalt cement has been used.

The addition of 1.0 and 2.0 percent of high density Polyethylene (HDPE) to asphalt binder is not able to modify the mechanical behavior of asphalt mixture effectively [9]. The appropriate amount of polyethylene terephthalate was determined to be 4.0 to 6.0 percent by weight of asphalt binder content, however, the result of the study indicated that modified mixture had lower trend to rut when compared to the non- modified asphalt mixtures [10].

The research published by [11], pointed out that for optimal economy; it is desirable to choose an asphalt modifier that resists multiple distresses such as rutting, it was found that the choice of polymer might have significant impact on rutting properties and that mixtures boasting the highest rutting life contained reactive Styrene-Butadiene cross linked polymers. Research carried out [12], conformed the improvement in rutting resistance due to modify the asphalt concrete by Styrene Butadiene Rubber.

[13] monitoring the behavior of asphalt mixture at varying temperatures from 30°C to 50°C in steps of 5°C, they depicted that the performance of modified binders in the asphalt concrete mixtures is superior than plain binders, hence, the use of modified binders in the asphalt concrete mixtures increases the life of the pavement during adverse climatic conditions.
The work conducted by [14] demonstrated the results of elastic recovery and rutting resistance of mixtures modified by Styrene Butadiene Rubber, they founded that modified mixtures have a 79 percent increase of elastic recovery and 54 percent increase of rutting resistance. [15] investigated the effect of EPDM on rutting properties of asphalt mixtures; the results showed that asphalt binder with 3.5 percent of EPDM had the lowest rutting depth after 2500 cycles of load repetitions, which is reduced by 32.56 percent in comparison with unmodified mixtures. EVA polymer has been widely used in the road construction industry for more than 40 years, where it improves both the workability of the asphalt during compaction and its deformation resistance in service. EVA polymers significantly improve the bitumen properties but to a different extent depending on the bitumen source and the polymer characteristics, [16] The results of experimental work conducted by revealed that polyethylene with its optimum content of 5 percent by weight of binder is a useful modifier for increasing the stiffness of asphalt concrete and confer additional pavement stability at elevated temperatures to minimize rutting [17].

3. METHODOLOGY AND MATERIAL:

3.1. Asphalt Mixture

Essentially, all of asphalt mixtures materials were assiduously brought from locally well-known sources. Concerning the asphalt cement binder, it was originally brought from National Refinery limited Pakistan and has 40/50 penetration grade, which is recommended to be used in hot region.

Regarding aggregates portion, the conventional source for the coarse aggregate was local consist of both of river sand and limestone dust that was servant as mineral filler. For appropriate production of dense asphalt mixtures, the mid limit gradation selection is consent with the recommended values offered by SCRB R/9, 2003. It was established to use the 12.5 mm nominal aggregate maximum size, which is suitable for wearing course pavement.

3.2. Polymers

The SBR and EPDM polymers have been brought from Modern Polymer industry. Based on previous studies mentioned in literature review, the quantity of polymers blended with asphalt cement hold constant by three categories with different concentrations, thus, the PEW and EVA
have been added by 2, 4 and 6 percent of asphalt cement weight and for SBR and EPDM the percent became 5, 10 and 15.

The specified percent of polymer was mixed with toluene in a flask (500 ml vol.) by the ratio of 1gm/1 ml and placed in air for approximately 24 hours. This procedure increased the polymers digestion and swelling as well as decreased the time of mixing. The homogenous slurry was added to the heated asphalt and mixed using an electrical stirrer at 1200 r.p.m for one hour at approximately 180°C.

The first phase of asphalt mixture preparation involved: washing, drying, separating and recombined the aggregates particles with limestone dust to obtain the required gradation. Subsequently, both of aggregates and asphalt modified cement were heated to suitable mixing temperature, in this case, the mixing temperature was relatively high (160°C, due to the presence of polymers substances).

The binder content was held constant by 4.9 percent of total mixture weight throughout the forming of asphalt mixtures specimens. Each cylindrical testing specimen has dimensions of 101.6 mm in diameter and 203.2 mm in height, which required approximately 3800 g of asphalt mixture raw materials.

The specimens were compacted by double plunger method with a load of 16600 kg. The load was applied to each end of the specimen for one minute. Finally, the specimen was carefully transferred to a smooth and flat surface, allowed to cool by standing it overnight at room temperature and then removed from the mold using a hydraulic extractor.

The permanent deformation is expressed as vertical micro strain and calculated by using Eq.(1);

$$\varepsilon_p = \frac{\Delta H}{H}$$

(1)

where;

$$\varepsilon_p$$ = vertical micro strain, mm/mm

$$\Delta H$$ = vertical deformation at the specified load repetition, mm

$$H$$ = original height of the specimen, 203.2 mm

The resilient modulus of asphalt mixture, ASTM D-4123, can be applied as indicator of flexible pavement ability to resist the harmful effects of high axle loading and elevated temperature conditions. According to Huang, 2003, the resilient modulus is the elastic modulus based on recoverable strain in repeated load test and can be expressed by Eq. (2);

$$MR = \frac{\sigma_d}{\varepsilon_r}$$

(2)

where;
MR = resilient modulus of asphalt mixture, psi
\(\sigma_d \) = deviator stress, which is the axial stress for unconfined compression test, 20 psi
\(\varepsilon_r \) = recoverable vertical strain corresponding to the 200th repetition of load application.

4. RESULT OF STUDY

4.1. Effect of Temperature on Permanent Deformation and Resilient Modulus
The permanent deformation and resilient modulus of asphalt mixture is highly depended upon the temperature. From the experimental procedure it is noted that to increasing the test temperature from 40°C to 50°C produce an increase in permanent deformation by 25.8 % and a reduction in resilient modulus by 40.1 %. These two percentages became 69.2 % and 64.3 % respectively when the temperature raised to 60°C. This behavior is quite understood and logically accepted because the stiffness of asphalt binder is adversely affected by the temperature increasing.

4.2. Effect of Stress Level on Permanent Deformation
The stress level is also the main important factor which directly affect the permanent deformation of road pavement. To put light on this point, the repeated load test conducted at three stress levels; 10, 20 and 30 psi, from the experimental procedure it is clear that increasing stress level from 10 psi to 20 psi yields mixtures with higher deformation value by 13.8 %, in the same way, the percent of deformation increase reached 31.8 % as the stress level increased to 30 psi.

4.3. Effect of Polymers on Resilient Modulus
The resilient modulus test of asphalt mixtures has been performed as outlined by Huang, 2003 at 40°C and by applying stress magnitude equal to 20 psi, the elastic strain recorded at 200th No of repetitions. The result shows the effect of incorporating a specified amount of PEW on the resilient modulus, inspecting this figure deliver the message that the maximum resilient modulus occurred at 4.0 % polymer content, furthermore, the total percent of modulus increase reached 3.74 with an incremental value equal to 0.62 % for each percent of PEW addition.
This behavior is quite similar in the case of SBR usage, herein, adding SBR with a value up to 15 %, elevate the resilient modulus by 7.39 % and by an incremental value equal to 0.49 % for each 1.0 % of added polymer. This improvement in resilient modulus is just similar to the situation when the EPDM is act as additive, in the same way, and within the range of polymer dosage, the enhancing percent in resilient modulus recorded 0.46 % for each 1.0 % of EPDM addition with total percent of increase equal to 6.92. The justification of this similarity deduced his credibility from the fact that both of these polymers lie in the same polymer category of elastomer. The
influence of blending asphalt binder with EVA polymer is portrayed which declare that, this polymer also increases the resilient modulus by total amount of 4.64 % and with incremental magnitude of 0.77 %.

4.4. Effect of Polymers on Permanent Deformation

The particular concern of this study is to investigate the role of modifying asphalt binder with certain polymers in improving asphalt mixture resistance against permanent deformation. The participations of experimental work devoting to reach this goal are visualized in Figures 12, 13, 14 and 15.

Good demonstration of PEW amount influence on micro strain magnitude can be understood by monitoring, as the PEW dosage increased up to 6.0 %, the total micro strain reduced by 13.24 % with an incremental value of 2.20 % for each one percent of PEW dosage, display clearly the relationship between SBR and micro strain. Increasing this polymer concentration from 0.0 % to 15 % caused a decreasing in micro strain by 30.20 %. The value of incremental reduction equal to 2.01%. The role of EPDM content on micro strain, again, increasing EPDM value up to 15 % reduced the micro strain by total amount of 30.46 % and by 2.03 % of incremental value. This similarity in results is not surprisingly as mentioned previously.

5. Conclusion of Study

The Conclusion of this Research paper can be summarized as

- It is invariably found that, all four types of polymers used in this study succeed in improving the ability of asphalt mixture to resist the permanent deformation, however, the degree of success vary from one type to other. whereas, the SBR and EPDM polymers are sharing approximately the same value of permanent deformation reduction by 30.20 % and 30.46 % respectively and at the same polymer content of 15 % by weight of asphalt binder. On other hand, the PEW and EVA polymers reduce the permanent deformation micro strain by 13.24 % and 17.35 % respectively at the 6 % polymer content.

- The resilient modulus of asphalt mixture clearly effected by the participation of polymers as additives. In other words, incorporating PEW substance into the mixture increased the resilient modulus by 3.74 % at 6.0 % content of PEW. The SBR and EPDM polymers seems to be more effective in this activity, their percentages of extended the resilient modulus raised to 7.39 and 6.92 respectively and at exact 15 % of polymer content. The EVA polymer exhibit an improvement value equal to 4.64 % at 6.0 % of material content.
• Elevating the test temperature from 40°C to 50°C produce an increase in permanent deformation by 25.8 % and a reduction in resilient modulus by 40.1 %. These two percentages became 69.2 % and 64.3 % respectively when the temperature raised to 60°C.
• Increasing stress level from 10 psi to 20 psi yields mixtures with higher deformation value by 13.8 %, in the same way, the deformation percent of increase reached 31.8 % as the stress level increased to 30 psi.

6. REFERENCES

