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Abstract— This paper studies the modeling and control of 

quadcopter. It models the quadcopter nonlinear dynamics using 

Lagrange formalism and design controller for attitude (pitch & 

roll), heading & altitude regulation of quadrotor. Mathematical 

modeling includes aerodynamic effects and gyroscopic moments. 

One Non-linear Control strategy, Third-Order SMC based on a 

super-twisting algorithm has been proposed. Third-Order SMC 

Controller is designed for regulation control problem with the 

four control variables. The Controller has been implemented on 

the quadrotor physical model using Matlab/Simulink software. 

Finally, the performance of the proposed controller was 

demonstrated in the simulation study. The simulation results 

show excellent modeling and control performance. 

Index Terms— HOSMC, Lagrange, Mathematical 

Modelling, Quadrotor, MATLAB/Simulink. 

1. INTRODUCTION 

An Unmanned Aerial Vehicle (UAV) refers to a flying machine 

without an on-board human pilot [1], [2]. These vehicles are being 

increasingly used in many civil domains, especially for 

surveillance, environmental researches, security, rescue, and 

traffic monitoring. 

Under the category of rotorcraft UAVs, Quadrotor has acquired 

much attention among researchers. The quadrotor is a multi-

copter that is lifted and propelled by four rotors, each mounted on 

one end of a cross-like structure. Each rotor consists of a propeller 

fitted to a separately powered Brushless DC motor. The 

quadcopter has six degrees of freedom (three translational and 

three rotational) and only four actuators [3]. Hence, the 

quadcopter is an underactuated, highly nonlinear, and coupled 

system. 

Several linear control approaches, such as PID, Linear Quadratic 

Regulator (LQR), and Linear Quadratic Gaussian(LQG), have 

been proposed in the literature and applied for attitude 

stabilization and/or altitude tracking of Quadrotors[13], [14]. 

However, these methods can impose limitations on the 

application of quadrotors for extended flight  

Regions, i.e., aggressive maneuvers, where the system is no 

longer linear.  

Moreover, the stability of the closed-loop system can only be 

achieved for small regions around the equilibrium point, which 

are extremely hard to compute. Besides, the performances of 

these control laws on attitude stabilization are not satisfactory 

enough compared with other more advanced methods. 

To overcome this problem, nonlinear control alternatives, such as 

feedback linearization, SMC [15], [16], [17], and Backstepping 

[18] approaches are recently used in the VTOL aircraft control 

framework. An integral predictive nonlinear H∞ strategy has 

been also proposed and applied by G.V. Raffo et al. in [19]. 

In summary, the literature on quadrotor control ignores the 

aerodynamic effects, air disturbance, and gyroscopic moments in 

the dynamic modeling of the quadrotor.  Besides, in the case of 

sliding mode controller implementation, it does not reduce both 

the control effort and the chattering effect. 

This paper uses a novel approach to address the above problems. 

It also designed a novel Third-order SMC controller with 

minimum tracking error. 

The paper is organized into five sections. In section 1, it 

introduces quadrotor UAV. In Section 2, it models the physical 

system by considering the aerodynamic and gyroscopic effects. 

In Section 3, it designs second-order SMC based on the 

supertwisting algorithm. In Section 4, present the simulation 

results obtained from the control implementation of the physical 

system in the Simulink environment. Finally, in Section 5, it 

shows the control inputs and then concludes the work. 

2. MATHEMATICAL MODELLING 

In this section, a complete dynamical model of the 

Quadrotor UAV is established using the Lagrange 

formalism. 

2.1 Rotational Matrix 

The orientation of the quadrotor is represented by Euler 

angles (pitch, roll, and yaw).To transform the body-fixed 

frame into the inertial frame; the z-y-x rotational matrix is 

considered [4]. 
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To avoid the system singularities, it is important to assume 

the angle bound 

   
-π π -π π

<φ< ; <θ< ;-π<ψ<π
2 2 2 2

                                       (2.1) 

 
 
 
 
 

(x,φ)

1 0 0

R = 0 cφ -sφ

0 sφ cφ

    
 
 
 
 
 

(y,θ)

cθ 0 sθ

R = 0 1 0

-sθ 0 cθ

 

 
 
 
 
 

(z,ψ)

cψ -sψ 0

R = sψ cψ 0

0 0 1

                                                        (2.2) 

The Euler rotation about z-y-x or 
xyzR is given by 

xyzR = (z,ψ)R
(y,θ)R (x,φ)R  

 
 
 
 
 

cψcθ sφsθcψ-sψcθ cφsθcψ+sψsφ

= sψcθ sφsθsψ+cψcφ cφsθsψ-sφcψ

-sθ sφcθ cφcθ

 (2.3) 

The studied Quadrotor rotorcraft is detailed with their body- 

and inertial frames b b b

bF =(b,x ,y ,z )  and G G G

iF =(G,x ,y ,z )  

respectively. 

The model partitions naturally into translational and 

rotational coordinates [6] 

  3ξ= x,y,z              3η= φ,θ,ψ                   (2.4)  

 ξ= x,y,z   denotes the position vector of the center of mass 

of the Quadrotor relative to the fixed inertial frame and   

 η= φ,θ,ψ  denotes the orientation of quadrotor to the inertial 

frame. This is shown in Figure 1 below 

 

Figure 1 Typical quadrotor schematic diagram with the 

body and inertial frames [5] 

1.2 Forces, Moments, and Torques on Quadrotor 

2.2.1 Thrust forces 

The quadrotor has four propellers so that it produces four 

thrust forces. 


4

i

i=1

F= F                                (2.5)                                                                                       

1 2 3 4F=F +F +F +F                  (2.6) 

 

2.2.2  Moments 

Gyroscopic Moment: There are two gyroscopic torques, this is 

due to the motion of the propellers (Mgp) and the quadrotor body 

(Mgb) [11] given by: 

     
4

1

1

0,0, ( 1)i

gp r i

i

M J w







                        (2.7)  

           
gbM J                                        (2.8) 

       
xx
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zz

I 0 0

J= 0 I 0

0 0 I

 
 
 
 
 

                                      (2.9) 

Since the quadrotor geometry is symmetric, Ixy = Ixz= Iyx = 

Iyz = Izx = Izy = 0.Where Ω is the vector of angular velocity 

in a fixed earth frame. 

                      

.

.

.

φ

Ω= θ

ψ

 
 
 
 
 
 
 

 

Aerodynamic friction moment: the quadrotor moves in the 

air, due to this it is subjected to aerodynamic friction. The 

torque caused by this aerodynamic friction is called the 

aerodynamic friction moment. It is given by: 

 
 
 

Τ
. . .
2 2 2

a 4, 5 6M = diag(k k ,k ) φ θ ψ               (2.10) 

4 5 6
( , , )diag k k k  are aerodynamic friction coefficient and 

.
2η  

are angular velocity square vector for rotational dynamics. 
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2.2.3 Torques 

Pitch torque 

It is directly proportional to the difference of thrust force 

generated by the second and fourth propellers 
4 2(F -F )  [7-9]. 

φ 4 2τ = l(F -F )                             (2.11) 

Roll torque 

It is directly proportional to the difference of thrust force 

generated by the first and Third propellers
3 1(F -F )  [7-9]. 

θ 3 1τ = l(F -F )                              (2.12) 

Yaw torque 

which is directly proportional to the difference of thrust 
force generated by all the propellers [7-9]. 

ψ 1 2 3 4τ = c(F -F +F -F )                      (2.13)                       

1.3 Modeling with Lagrange formalism 

To obtain the quadrotor dynamics in terms of Lagrange, we 

use the Lagrange partial differential equation. 

.

d L L
F

dt q
q

 
 




                               (2.14) 

Where  ξF= F ,τ . We can calculate the translational and 

rotational components as follows                                                                              
 

. .

1 1 1

. .

xyz 2 ξ 1 2

4 . .

3 1 3i

i =1

k x (cφsθcψ+sψsφ)u -k x
0

R 0  - k y =F = (cφsθsψ-sθcψ)u -k y

k z (cφcθ)u -k zF

     
     
     
     
     
           


(2.15) 
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ψ yy xx 6
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τ

τ  - M - M - M = τ = τ +J Ω φ-(I -I )φ ψ -k θ

τ
τ -(I -I )θφ-k ψ

a gp gb

 
  
  
  
  
  
 
 

    

(2.16) 

Computing the Lagrange partial differential equation for all the 

six generalized coordinates, we get the following differential 

equations 

       
.. .

1 1
u k

x =(cφsθcψ+sψsφ) - x
m m

                     (2.17) 

     
.. .

1 2
u k

y =(cφsθsψ-sθcψ) - y
m m

                         (2.18) 

     
.. .

31
ku

z =(cφcθ) - z -g
m m

                                    (2.19) 

     

-
... . . .

rφ zz yy 2r 4

xx xx xx xx

τ (I -I )J Ω k
φ = - θ- θ ψ - φ

I I I I
         (2.20) 

     

- .
... . .

r 2θ 5r xx zz

yy yy yy yy

τ kJ Ω φ (I -I )
θ= + - φψ - θ

I I I I
        (2.21) 

     
... . .

ψ yy xx 26

zz zz zz

τ (I -I ) k
ψ = - θφ- ψ

I I I
                      (2.22) 

 

 

 

3. CONTROL SYSTEM DESIGN 

3.1 Third-order Sliding Mode Controller 

3.1.1 Super-twisting algorithm 

There are four major algorithms used for second-order sliding 

mode control design. These are Twisting, Sub-optimal, quasi-

continuous, and Super-twisting.  

All the first three algorithms need the measurements of 

sliding& sliding derivatives to guarantee the sliding and sliding 

derivatives to become zero. That is not the case in the Super-

twisting algorithm, it only needs a measurement of the sliding 

surface to guarantee the two-sliding mode existence. For this 

reason, Super-twisting can be used instead of the conventional 

(first-order) sliding mode using the same available 

information. Besides, it reduces chattering to a higher extent. 

One of the main advantages of higher-order sliding mode is it 

reduces chattering to a higher extent. 

Consider once more the dynamical system of relative 

degree 1 and suppose that 

                                 
.

σ =h(t,x)+g(t,x)u                         (3.1) 

                                  
2

3+k sign( )Udt σ σ                 (3.2) 

Where k  is positive constant 

Furthermore, assume that for some positive constants  

C,
MK ,

mK ,
MU , q   

. .

M m M M

h
h +U g C,0 K g(t,x) K , < qU ,0<q<1

g
      

                                                                                        (3.3)                                                                                                                              
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Then the control signal becomes  

 
1

2U=-λ sign( )+u        






.
M

M

-u,for u >U
u=

-αsign( ),for u <U
 (3.4)                             

 

Theorem: with mK α > C  and λ  sufficiently large, the 

controller (3.3) guarantees the appearance of a 2-sliding mode 

.

 0    in the system, which attracts the trajectories in 

finite time. The control u enters in finite time the segment 

 - ,
M M

U U  and stays there. It never leaves the segment, if the 

initial value is inside at the beginning. A sufficient (very 

crude!) condition for the validity of the theorem is 

             
m M

m

2

m

2
(K α+C)K (1+q)

(K α -C)
λ >

K (1-q)
                   (3.5) 

 

 

3.2.1.1 Design of Sliding mode control for altitude (z) 

The state-space equation for altitude is as follows 

                       

.

5 6

.
31

6 6

x = x

ku
x = (cφcθ) - x -g

m m

                      (3.6)    

Then the linear sliding surface form 
5 6σ = cx +x  c > 0 is c

larger then the sliding decay rate is faster. by select c be 3, 

then the sliding surface become 

                                 5 63x x                             (3.7) 

Then computing 
.

σ  get     
. . .

31
5 6 6 63 3 ( )

ku
x x x c c x g

m m
                     (3.8)              

from the above 3.7 we assign 3
6 6( , ) 3

k
h t x x x g

m
  

and 
( )

( , )
c c

g t x
m

 
  

3.2.1.2 Design of Sliding mode control for attitude ( , ) 

For   

The state-space equation for pitch is as follows 

            

.

7 8

. -
2

r8 1 2 2 10 3 10 12 4 1 8

x = x

x = a u +a Ω x +a x x -k a x

   (3.9) 

Then the linear sliding surface form as 
7 8σ = cx +x  c > 0  it 

c is larger the sliding dynamics decays rate is larger. By 

select c be 3, then the sliding surface become 

                   
7 83x x                                            (3.10) 

Then computing 
.

σ get

.
2

8 2 10 3 10 12 4 1 8 1 23 rx a x a x x k a x a u


                  

(3.10) 

From the above equation, we assign 

2
8 2 10 3 10 12 4 1 8( , ) 3 rh t x x a x a x x k a x



      and 

1( , )g t x a  

                           For   

The state-space equation for the roll is as follows 

   

.

9 10

. -
2

r5 510 4 3 8 6 8 12 4 10

x = x

x = a u +a Ω x +a x x -k a x

        (3.11) 

Then the linear sliding surface form as 
9 10σ = cx +x  

c > 0  it c is larger the sliding dynamics decays rate is 

larger. By select c be 3, then the sliding surface become 

                      9 103x x                                        (3.12) 

Then computing 
.

σ get  

.
2

5 510 8 6 8 12 4 10 4 33 rx a x a x x k a x a u


               (3.13) 

From the above equation, we assign 

2
5 510 8 6 8 12 4 10( , ) 3 rh t x x a x a x x k a x



      and 

4( , )g t x a  

3.2.1.3 Design of Sliding mode control for heading ( ) 

The state-space equation for yaw is as follows 

            

.

11 12

.
2

7 712 8 10 8 6 12 4

x = x

x = a x x -k a x +a u

                  (3.14) 

Then the linear sliding surface form as 
11 12σ = cx +x  

c > 0  it c is larger the sliding dynamics decays rate is 

larger. By select c be 3, then the sliding surface become 

                   11 123x x                                          (3.15) 
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 Then computing 
.

σ  we get   

.
2

7 712 8 10 8 6 12 43x a x x k a x a u                                

(3.16)                   

From the above equation, we assign 

2
712 8 10 8 6 12( , ) 3h t x x a x x k a x    and 7( , )g t x a  

3.4 Calculated Controller parameters for regulation 

The controller parameters listed below in Table I are 

calculated based on the above theorem. 

 

TABLE I. Regulation problem controller parameters for 

sliding mode control 

4. Simulation results and Analysis  

4.1 Parameters used for simulation 

TABLE II. Physical parameters for the quadrotor [11] 

 

 

4.2 Initial conditions  

 
  

                              

.

.
3

.
3

.
3

(0) 6

(0) 1 /

(0) 0.174

(0) 1.74*10 /

(0) 0.174

(0) 1.74*10 /

(0) 0.174

(0) 1.74*10 /

z m

z m s

rad

rad s

rad

rad s

rad

rad s





















 




 




 




 

        (3.17) 

 

Controlled 

variables 

 

Calculated Values 

 for Super-

twisting SMC 

 for Super-

twisting SMC 

Z(altitude) 60 1 

Pitch(phi) 15 5 

Roll (theta) 15 5 

Yaw (psi) 
5 1 

 

   Parameters 

 

Calculated Parameter  

Values and Unit 

Arm Length(l)  0.5m 

Total mass 0.5 kg 

Quadrotor mass 

moment of inertia (I) 

diag (0.005,0.005,0.01) 

kgm2 

 Motor inertia (Jr ) 2.8385*10-5 N.m/rad/s2 

 Coefficient of Lift (b) 2.9*10-5 

 Coefficient of Drag (d) 3*10-7 

Aerodynamic friction 

Coefficients (K1,2,3) 
0.3729 

Translational drag 

Coefficients (K4,5,6) 
5.56*10-4 

Gravitational 

acceleration(g)  
9.81 m/s2 
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4.3 Simulation graphs and Analysis 

For simulation purpose, the parameters listed in Table II are 

used. 

 

Figure 2 Altitude regulation controller performance using 

second-order SMC 

 

Figure 3 Pitch regulation controller performance using 

second-order SMC 

 

Figure 4, Roll regulation controller performance using 

second-order SMC 

 

Figure 5 Yaw (heading) regulation controller performance 

using second-order SMC 

The overall results are shown in Fig. 2, Fig. 3, Fig. 4, and Fig. 5, 

respectively.Fig.2 demonstrates the regulation performance of 

altitude, which is shown that the response of the quadrotor can 

regulate to zero in a very small finite time. Fig. 3, Fig. 4, and Fig. 

5 show the regulation performances of three Euler angles, i.e., 

pitch, roll, and yaw, respectively. It shows that the quadrotor 

regulates to zero for three Euler angles as closely as possible with 

minimum error. 

It can be seen from the above simulation results that the 

proposed third-order sliding mode control is effective and 

accurate. 

5. Control Signal for Regulation 

 

Figure 6 Altitude control signal of second-order SMC for 

regulation 

In Fig. 6, the result shows the altitude control signal of the 

controller. The control signal is in the practical region. The 

motors can generate this amount of thrust force with 3000 

rpm speed. With 3000-rpm speed, the motors can generate 6-

newton force.  
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Figure 7 Pitch control signal of second-order SMC for    

regulation 

In Fig. 7, the result shows the pitch control signal of the 

controller. The control signal is in the practical region. one 

motor can produce 1.1 newtons at 2500 rpm. Making one 

motor stationary and the other one rotate at 2500 rpm can get 

a 0.55-newton meter torque. From the figure, the maximum 

bound on the pitch control signal is 0.425-newton meter, 

which is less than 0.55-newton meter. 

 

 

Figure 8 roll control signal of second-order SMC for 

regulation 

In Fig. 8, the result shows the roll control signal of the 

controller. The control signal is in the practical region. one 

motor can produce 1.1 newtons at 2500 rpm. Making one 

motor stationary and the other one rotate at 2500 rpm can get 

a 0.55-newton meter torque. From the figure, the maximum 

bound on the roll control signal is 0.5-newton meter, which 

is less than 0.55-newton meter. 

 

Figure 9, Yaw control signal second-order SMC for 

regulation 

In Fig. 9, the result shows the yaw control signal of the 

controller. The control signal is in the practical region. One 

motor can produce 1.1 newtons at 2500 rpm. Making one 

motor stationary and the other one rotate at 2500 rpm can get 

a 0.55-newton meter torque. From the figure, the maximum 

bound on the yaw control signal is 0.05-newton meter, which 

is less than 0.55-newton meter. 

6. Simulation of the controlled variable under 

external disturbance 

In Table III below, there are random disturbance ranges for 

the four controlled variables. These parameters are used for 

simulation purposes. 

TABLE III. Range of external disturbance parameters for 

simulation purposes. 

 

Dynamics/state 

 
Random disturbance range 

Z (altitude)  -2 to 2 Newton 

Pitch (phi-attitude) -0.1 to 0.1 Newton meter 

Roll (theta-attitude) -0.6 to 0.6 Newton meter 

Yaw (psi-heading)  -0.5 to 0.5 Newton meter 
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Figure 10 pitch, roll, altitude, and yaw simulation under the 

influence of external disturbance 

In Fig. 10, the result shows the performance of the four third-

order SMC controllers (altitude, pitch, roll, and yaw) under 

the influence of random disturbance. As we see from the 

graphs, the controllers regulate the quadrotor physical 

system under the influence of external random disturbance. 

The controllers are robust. 

Conclusion 

In this paper, the nonlinear dynamic model of the quadrotor is 

derived using the Lagrange formalism. The model contains two 

parts, namely, translational and rotational dynamics (Euler-

angle dynamics). The nonlinear model includes the gyroscopic 

moments induced due to the rotational motion of the quadrotor 

body & propellers mounted on the rotor . Besides, the 

aerodynamic friction moment & force are considered in the 

modeling. After the derivation of the dynamic model, a 

nonlinear control strategy (Third-order SMC) based on the 

supertwisting algorithm is designed. 

             To verify the performance and efficiency of the 

controller, a simulation is done via Matlab/Simulink. The third-

order SMC is designed for four output-controlled variables 

separately. The controlled variables are altitude, pitch, roll, and 

yaw. The third-order SMC is implemented on the physical 

system for the regulation problem. The controller is excellent; it 

can regulate the physical system with fast & smooth response 

and good stability. The control effort used by the controller to 

regulate the system is so small and within a practical limit. 

Finally, the controller performance was tested by adding 

random disturbance to the system. The controller achieves 

excellent performance in the presence of external disturbance. 

Overall, the higher-order SMC controller designed for the 

quadrotor system is robust and has an excellent performance. 
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APPENDICES 
 Proof of theorem 

Computing with 
Mu U  yields

1. .

2
1

2
u u 


  . It 

follows from Eqs. (3.2), (3.3) in the text that that 
.

u > 0 with 

Mu U  and thus,  
.

u u  < 0, and u moves 

 

 Figure 1 A majoring curve for the super twisting controller  

 

towards the segment 
Mu U  . Therefore 

Mu U is 

established in finite time, for 
.

Mu U  when Mu U . 

Note that a 1-sliding mode with ( )mu U sign   could exist 

during time intervals of constant ( )sign  .the following 

equation is satisfied with
Mu U , 0  : 

.
.. . .

1/2
0.5 ( )h g u g g sign


   


     

The trivial identity 
.

( )
d

sign
dt

   is used here. Note that 

once more, the values taken on sets of measure 0 are not 

accounted for; thus, the differentiation is performed with 

( )sign const  . The latter equation may be rewritten as   

.

..

1/2

1
[ , ] [ , ] ( )

2
m MC C K K sign



   


 
 
    
 
 
 

 

This inclusion does not ‘remember’ anything about the 

original system. With 0  ,
.

0  , the real trajectory is 

confined by the axes 0 
.

0  and the trajectory of the 

equation 
..

( )mK C    . Let 
M be the intersection of 

this curve with the axis 
.

0  . Obviously,

 
.

2

02 m MK C     (Fig.1). It is easy to see from Fig. 1 

that 

0  ,
.

0  ,

.

1/2

1

2 m

C

K



 


  
..

0   

Thus, the majoring curve 0  is constructed from the 

following curves (3): 

.
2 2( )( )m MK C       with 

.

0  ,        

 
.

2

02 m MK C     

M   with 0 
.

   
1/22

m

C

K
 



 
 

 
 

. .
1/22

M M

m

C

K
   



 
    

 
 with 0   

M  

The condition 
. .

0/M  < 1 is sufficient for the algorithm 

while
Mu U . That condition is rewritten as     

 
2

2 2

2
1

( )

m

m m

K C

K K C



 





 

Unfortunately, the latter inequality is still not sufficient, for 

this consideration does not include the possible 1-sliding 

mode keeping 
Mu U  . 

It is easy to see that such a mode is not possible 
.

0   . 

Indeed, in that case, 
.

u stays negative and does not allow 
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any sign switching of 
Mu U .on the other hand, from Eqs. 

(3.2), (3.3) and  
Mu U , in such a sliding mode 

 
.

(1 ) 1m M M M

h
K q U g u K q U

g
       

Thus,  
.

0 1M MK q U   , and  the condition 

.

.

0

(1 ) (1 )

(1 ) (1 )

M m M m

M M M

K q U K q

K q U K q





 
 

 
 

Is sufficient to avoid keeping 
Mu U  in sliding mode. The 

resulting condition above coincides with eq. (3.5) in text. 

This completes the proof of the theorem. 
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