

GSJ: Volume 13, Issue 9, September 2025, Online: ISSN 2320-9186 www.globalscientificjournal.com

JAVED'S IDEA FOR THE AREA OF A CIRCLE

Javed Iqbal S/O Abdul Aziz

GSJ

Deriving the Area of a Circle

Step 1: Geometric Intuition Using Right-Angled Triangles

Consider a circle of radius r.

Imagine dividing the circle into a very large number of infinitesimally small right-angled

triangles, each with:

One side as an infinitesimally small arc of length a

- The other side as the radius r
- ullet Nearly right angle (90°) between the infinitesimally small side $\,$ a $\,$ and the radius $\,$ r $\,$ of the circle

Each right angled triangle area $=\frac{1}{2}ar$

So, the total area **A** of the circle is equal to the sum of all these triangle areas:

$$A = \frac{1}{2}ar + \frac{1}{2}ar + \frac{1}{2}ar \dots$$

Factor out the common terms $\frac{1}{2}r$ we get

$$A = \frac{1}{2}r(a+a+a+\cdots)$$

The sum of all the **a i.e** $(a + a + a + \cdots)$ is equal to the circumference of the circle

Which is equal to $2\pi r$

So the result of the area of the circle

$$A = \frac{1}{2}r(2\pi r)$$

Final result

$$A = \pi r^2$$

L Comparison to Traditional Methods

Method	Core Idea	Commonly Taught?	Javed's Style?
Rearranging sectors	Forming a parallelogram from wedges	✓ Yes	× No
Integration (polar coords)	$\int_0^{2\pi} \int_0^r r dr d\theta$	✓ Yes	× No
Inscribed polygons (limits)	Approximating area via regular polygons	Yes	Yes
Infinitesimal triangles	Summing ½ ar over arc of circle	X Rarely	Yes

