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Abstract 

Foreign exchange markets are important in the field of finance in order to measure the currency value of a country 
with respect to another. The foreign exchange rates data are volatile time series as they have huge price swings 
and jumps in a shortage or demanding periods. It is known that, most economic and financial data are either non-
linear or non-stationary, which is a problem when inappropriate model is applied and the result of the prediction 
may be inaccurate. In this study, we compared the performances of ARIMA, hybrid ARIMA-ARCH and hybrid 
ARIMA-GARCH models in modeling the volatility of the foreign exchange (official exchange rates). The capabilities 
of the models were evaluated using some selected criteria. It was concluded that, the hybrid ARIMA-ARCH/GARCH 
models performed better compared to Box-Jenkins ARIMA model in terms of fitting and forecasting the official 
exchange rates. 
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1.0 Introduction 

Volatility measures the dispersion of asset price returns. Recognizing the importance of foreign exchange volatility 

for risk management and policy evaluation; academics, policy makers, regulators, and market practitioners have 

long studied and estimated models of foreign exchange volatility and jumps. Financial economists have long 

sought to understand and characterize foreign exchange volatility, because the volatility process tells us about how 

news affects asset prices, what information is important and how markets process that information. 

Policy makers are interested in measuring asset prices volatility to learn about market expectation and uncertainty 

about policy. For examples, one might think that a clear understanding of policy objectives and tools would tend to 

reduce market volatility. More practically, understanding and estimating asset price volatility is important for asset 

pricing, portfolio allocation and risk management. Traders and regulators must be considering not only to the 

expected return from their trading activity but also the trading strategy’s exposure to risk during period of high 

volatility. Traders risk’s-adjusted performance depends upon the accuracy of their volatility predictions. Therefore, 

both traders and regulators use volatility prediction as inputs to models of risk management, such as: value-at-Risk 

(VAR). The goal for volatility modelers has been to simultaneously account for the most prominent features of 

foreign exchange volatility.  

To account for these characteristic, researchers started modeling weekly and daily volatility with parametric 

ARCH/GARCH models in the 1980s. Practitioners often use the Risk-metrics statistically models, which is a member 

of large ARCH/GARCH family. These models effectively describe the auto-correlation in daily and weekly volatility. 

At intraday horizons, however, institutional features- that is, market opening/closings and news announcement- 

create strong intraday patterns, including discontinuities in prices. Many researchers on intraday data sorted out 

the factors behind these periodic patterns and discontinuity. The use of intraday data enabled the next big 

advance in volatility modeling ‘‘realized volatility’’, which is the use of very high frequency returns to calculate the 

volatility at every instant. A few years later, researchers began to develop increasingly sophisticated models that 

estimate jumps and that combined auto regressive volatility jumps. In short, academic researchers have improved 

volatility estimation remarkably quickly in this last thirty years and policy-makers, traders and regulators have 

benefitted from these advances. 

One of the problems of forecasting lies in the use of appropriate methods to fit the time series data depending on 

the nature of the data .It is known that, most economic and financial data are either non-stationary or non-linear, 

which is a problem when inappropriate model is applied and the result of the prediction may be in-accurate and 

may not give the appropriate picture of what could be the future events. Therefore, it is necessary  to look for 

other methods which are more appropriate and produce more accurate forecasts when the data is non-linear or 
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non-stationary .In this study, we will compare the performances of the methods of  traditional Box-Jenkins ARIMA, 

hybrid ARIMA-ARCH and hybrid ARIMA-GARCH models. 

2.0 Methodology 

The first step in developing Box-Jenkins ARIMA model is to determine if the series of data is stationary or not and if 

there is any significant seasonality that needs to be modeled. Stationarity can be accessed from a run sequence 

plot. The run sequence plot should show a constant location and scale. It can also be detected from an auto-

correlation plot.  Specifically, non-stationarity is often indicated by an auto-correlation plot with very slow decay. 

Moreover, unit root tests provide a more formal approach to determining the degree of differencing such as 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Phillips-Perron unit root test. The KPSS test has null hypothesis (H0) 

of level stationary against an alternative (H1) of unit root (non-stationary). The decision rule for KPSS test is that, if 

the P-value of its test statistic is greater than the critical value, say 0.05, then reject the null hypothesis (H0) of 

having a level stationary and conclude the alternative hypothesis that it has a unit root (non-stationary).  While for 

Phillips-Perron unit root test reverse is the case. Stationary of the data is important because it describe the future 

behaviour of the process.  

If the data are not stationary, we must transform them by using first difference. First differences are the data 

changes from one period to the next. Plotting the data of the first difference can reveal whether the data has been 

transformed to a stationary series or not. If it is still not stationary, the second difference is taken. Model fitting 

can be carried out once the stationary of the series has been achieved.  

i) Box-Jenkins ARIMA Model  

Box-Jenkins ARIMA model has been used widely in many areas of time series analysis. Since ARIMA is among the 

earliest models, the capability of this model always being tested and widely used as a benchmark with other time 

series models. Box-Jenkins ARIMA is known as ARIMA (p,d,q) model where p is the number of autoregressive (AR) 

terms, d is the number of difference taken and q is the number of moving average (MA) terms. ARIMA models 

always assume the variance of the data to be constant. The ARIMA (p,d,q) model can be represented by the 

following equation:  

 yt = ∅1 yt-1 + ... + ∅p yt-p + 𝜀𝜀t + 𝜃𝜃1 𝜀𝜀t-1 + ...+𝜃𝜃q 𝜀𝜀t-q    (1)  

Where 𝜀𝜀t ~ N (0,𝜎𝜎t
2), p and q are the number of autoregressive terms  and the number of lagged forecast errors, 

respectively.  

The identification of modelling the conditional mean value is based on the analysis of estimated autocorrelation 

and partial autocorrelation (ACF, PACF). These estimators may be strongly inter-correlated. It is therefore 

recommended not to insist on unambiguous determination of the model order, but to try more models. We must 
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not forget to carry out the verification, which is based on retrospective review of the assumptions imposed on the 

random errors.  

ii) ARCH Model 

ARCH (Auto-regressive conditional Heteroskedastic model) is the first and the basic model in stochastic variance 

modelling and is proposed by Engle (1982). The key point of this mode is that it already changes the assumption of 

the variation in the error terms from constant var(𝜀𝜀t) = 𝜎𝜎2  to be a random sequence which depended on the past 

residuals ({𝜀𝜀1,...,𝜀𝜀t-1}). That is to say, this model has changed the restriction from homoskedastic to be 

heteroskedasticity. This breakthrough is explained by Baillie and Bollerslev (1989). And this is an accurate change 

to reflect the volatility data’s features. Let 𝜀𝜀t as a random variable that has a mean and a variance conditionally on 

the information set It-1, the ARCH model of 𝜀𝜀t has the following properties, come from Terasvirta (2006).  First, 

conditional mean 

 E (𝜀𝜀t |It-1) = 0  

And second, conditional variance  

 𝜎𝜎2 = E (𝜀𝜀t
2|It-1)  

Is a positive valued parametric function of It-1, the sequence {𝜀𝜀t } may be observed directly, or it may be gotten 

from the following formula. In the letter case, it gives;  

 𝜀𝜀t = yt – 𝜇𝜇t (yt)  

Where yt is observed value, and 𝜇𝜇t (yt) = E(yt|It-1,) is the conditional mean of yt given It-1, Engle’s (1982) application 

was this type. In what follows, the 𝜀𝜀t could be expressed as another way on parametric forms of 𝜎𝜎2
t.So, here 𝜀𝜀t is 

assumed as follows:  

   𝜀𝜀t = Z t𝜎𝜎t 

Where {Zt } is a sequence of independent, identically distributed (iid) random variables with Zero mean and unit 

variance. This implied:  

   𝜀𝜀t ~D (0,𝜎𝜎2
t),  

So the ARCH model of order q is like this  

 𝜎𝜎2
t = ∝0 + ∝1 𝜀𝜀2

t-1 + ...+ ∝q 𝜀𝜀2
t-q = ∝0 + ∑ ∝𝑞𝑞

𝑖𝑖=1 i 𝜀𝜀2
t-i    (2)  
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Where ∝0 > 0, and ∝i > = 0, i >0. To assure {𝜎𝜎2
t } is asymptotically stationary random sequence, we can assume that 

∝1+∝2+... ∝q < 1. This is the ARCH model.  

With the generation of the ARCH model, it already can explain many problems in many fields, for instance, interest 

rates, exchange rates and trade options and stock index returns.  

iii)     Generalized – ARCH model (GARCH).  

Because of some drawbacks and limitation on ARCH model, it has been extended by the so-called generalized 

ARCH (GARCH) model that Bollerslev (1986) and Taylor (1986) proposed independently of each other. Based on the 

ARCH model has been raised, it adds the lagged conditional variance term (𝜎𝜎2
t-j ) as a new term in the GARCH 

model. The improved ARCH (GARCH model) also reduces the number of estimated parameters. In this model, the 

conditional variance is still a linear function of its own lags and error terms, it has the following form:  

 𝜎𝜎2
t  = ∝0 + ∑ ∝𝑞𝑞

𝑖𝑖=1 i 𝜀𝜀2
t-i + ∑ 𝛽𝛽𝑝𝑝

𝑗𝑗=1 j 𝜎𝜎2
t-j 

Where, 𝜎𝜎2
t will be replaced by ht, now we have  

 ℎt  = ∝0 + ∑ ∝𝑞𝑞
𝑖𝑖=1 i 𝜀𝜀2

t-i + ∑ 𝛽𝛽𝑝𝑝
𝑗𝑗=1 j ht-j     (3) 

 ℎt  = ∝0 + ∝1 𝜀𝜀2
t-1 + ... + ∝q  𝜀𝜀2

t-q + 𝛽𝛽jht-1 + ... + 𝛽𝛽pℎt-p 

where  ht is the conditional variance  

 ht-j is the past conditional variance  

 𝜀𝜀2
t-i past squared residual return.  

 ∝0 > 0, ∝i >=0, 𝛽𝛽j >= 0.  Above is GARCH (q,p) model.  

3.0 Data Analysis and Results 

For the purpose of the flow of the analysis, the time series data on monthly exchange rates from government for 

the periods of twenty years was used for the analysis. However, the time series plot which display the observations 

on y axis against equally spaced time intervals on the x axis used to evaluates patterns and behavior in data over 

time as displayed in figure 1 below. 
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                                           Figure 1 Official Exchange Rates 

Table 1;Test For Unit Root Of Official Exchange Rates 

Test statistic Values Lag order P-value Hypothesis 

(Ho) 

Decision  Remark 

ADF -1.1283 6 0.9162 Unit root Accept Ho Not 

stationary 

PP -3.9548 4 0.8884 Unit root Accept Ho Not 

stationary 

KPSS 4.1779 3 0.01 Stationary  Reject Ho Not 

stationary 

It is clear for the time series plot of the official exchange rate data series in figure 1 and the unit root test in table 1 

suggests that the data need to be transformed or differenced since it is confirmed to have a unit root. 
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Table 2: Fitting the ARIMA Models after the first difference. 

 

Model 

                     Parameter  

AIC 

 

BIC 

 

MSE AR(1) AR(2) MA(1) MA(2) 

ARIMA(1,1,1) 0.2340 

(±0.0641) 

 

- 

-0.9962 

(±0.0297) 

 

- 

1564.67 1575.08 40.18 

ARIMA(1,1,2) -0.2640 

(±0.1935) 

 

- 

-0.4547 

(±0.1708) 

-0.5337 

(±0.1667) 

1561.43 1575.02 39.36 

ARIMA(2,1,1) 0.2604 

(±0.0649) 

-0.1304 

(±0.0648) 

-09904 

(±0.0172) 

 

- 

1562.66 1576.55 39.59 

ARIMA(2,1,2) -0.2431 

(±0.3298) 

-0.0104 

(±0.1219) 

-0.4764 

(±0.3239) 

-0.5118 

(±0.3232) 

1563.42 1580.79 39.36 

 

From table 2; ARIMA (1,1,2) has the smallest AIC, BIC and MSE and it is therefore regarded as the best model for 

fitting official exchange rate. Furthermore, the estimated coefficient values for all ARIMA (p,d,q) strictly conforms 

to the bounds of parameter, between -1 and 1. This has made the model to be stationary. 

Table 3: Fitting  hybrid ARIMA-ARCH on differenced official exchange rate 

Model ARIMA(1,1,1)+ 

ARCH(1) 

ARIMA(1,1,2)+ 

ARCH(2) 

ARIMA(2,1,1)+ 

ARCH(3) 

ARIMA(2,1,2)+ 

ARCH(4) 

AR(1) -0.2362 -0.3034 -0.2606 0.7324 

AR(2) - - 0.0116 0.2645 

MA(1) 0.5207 0.5887 0.5459 -0.4526 

MA(2) - 0.0234 - -0.5353 

OMEGA 4.2292 4.2292 4.2292 4.2292 

ALPHA(1) 0.1000 0.0500 0.0333 0.0250 
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ALPHA(2) - 0.0500 0.0333 0.0250 

ALPHA(3) - - 0.0333 0.0250 

ALPHA(4) - - - 0.0250 

AIC 6.5599 6.6812 6.0013 6.3420 

BIC 6.6812 6.3562 6.3215 6.4125 

SIC 6.5981 6.6931 6.2123 6.3034 

 

From table 3; hybrid ARIMA-ARCH (2,1,1;3) has the smallest AIC, BIC and SIC and it is therefore regarded as the 

best model for fitting official exchange rate. Furthermore, the estimated coefficient values for all ARIMA-ARCH 

(p,d,q) strictly conforms to the bounds of parameter, between -1 and 1. This has made the model to be stationary. 

Table 4: Fitting hybrid ARIMA-GARCH model on differenced official exchange rates 

Model ARIMA(1,1,1)+ 

GARCH(1,1) 

ARIMA(1,1,2)+ 

GARCH(1,2) 

ARIMA(2,1,1)+ 

GARCH(2,1) 

ARIMA(2,1,2)+ 

GARCH(2,2) 

AR(1) -0.4456 -0.3796 -0.3847 0.4650 

AR(2) - - -0.0053 0.6511 

MA(1) 0.8911 1.0000 0.8815 -0.0046 

MA(2) - 0.2075 - -0.8372 

OMEGA 0.6628 0.8030 0.7663 1.4705 

ALPHA(1) 0.3773 0.4512 0.1985 0.8270 

ALPHA(2) - - 0.1277 0.00000001 

BETA(1) 0.8373 0.1126 0.8171 0.00000001 

BETA(2) - 0.6840 - 0.6263 

AIC 6.0710 6.0419 6.0703 5.9578 

BIC 6.1438 6.1437 6.1721 6.0887 

SIC 6.0702 6.0829 6.0686 5.9551 
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From Table 4, hybrid ARIMA-GARCH (2,1,2;2,2) has the smallest AIC, BIC and SIC and it is therefore regarded as the 

best model for fitting official exchange rate. Furthermore, the estimated coefficient values for all ARIMA-GARCH 

(p,d,q) strictly conforms to the bounds of parameter, between -1 and 1. This has made the model to be stationary. 

 

Table 5: Best fitted models on official exchange rate data 

Model AIC BIC 

ARIMA(1,1,2) 1561.43 1575.02 

ARIMA(2,1,1)+ARCH(3) 6.0013 6.3215 

ARIMA(2,1,2)+GARCH(2,2) 5.9578 6.0887 

From Table 5, are the three best models fitted on the official exchange rates data throughout this work. It can be 

seen that, the two hybrid models outperformed the ARIMA model, preferably, hybrid ARIMA-GARCH model 

performed best on the official exchange rate data. 

4.0 Conclusion  

In this paper, comparative performance of the traditional ARIMA model with the proposed hybrid ARIMA-ARCH 

and hybrid ARIMA-GARCH models was carried out on foreign exchange data (official). It can be seen that, because 

of the volatile nature of the foreign exchange data, ARIMA alone cannot capture the volatility of the data nor 

GARCH family alone. In the comparative performances of the three models, as hybrid ARIMA-ARCH and hybrid 

ARIMA-GARCH models outperformed ARIMA model. It can be concluded that, the hybrid ARIMA-ARCH and hybrid 

ARIMA-GARCH models captures volatility of the data better than the ARIMA model. Hence, hybrid ARIMA-GARCH 

model as the best model can be used to predict future values of Nigeria’s official exchange rates. 
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