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Abstract

Prostate cancer remains a major health concern among men, necessitating efficient and accurate diagnostic
approaches. This study presents a comparative evaluation of various machine learning algorithms for prostate
cancer prediction using clinical diagnostic features such as radius, texture, area, smoothness, and symmetry.
Data preprocessing involved normalization and correlation-based feature selection to enhance model
performance. Several algorithms such as Logistic Regression, Decision Tree, Random Forest, Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), XGBoost, LightGBM, CatBoost, and a Deep Learning model
were trained and assessed using accuracy, precision, recall, F1-score, and ROC-AUC metrics. Results revealed
that ensemble-based methods, notably XGBoost and Random Forest, outperformed other models in predictive
accuracy, while Logistic Regression provided higher interpretability. The study highlights the potential of
machine learning models in facilitating early and reliable prostate cancer detection to support clinical decision-
making.
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Introduction

The prostate is a small, walnut-shaped gland that forms part of the male reproductive system. It is located below
the bladder and in front of the rectum, surrounding the urethra—the tube responsible for carrying urine and
semen out of the body. The prostate gland plays a vital role in producing seminal fluid, which nourishes and
protects sperm, and also contributes to the regulation of urinary flow.

Prostate cancer is a malignant condition that originates in the prostate gland when abnormal cells begin to grow
uncontrollably, forming a tumor. While some prostate cancers progress slowly and may pose minimal health
risks, others are aggressive and can metastasize to other parts of the body. Early detection and accurate
diagnosis are essential for effective treatment and improved patient survival rates.

In recent years, the emergence of machine learning (ML) techniques has provided innovative approaches for
analyzing complex medical datasets, enabling improved accuracy in disease prediction and diagnosis. ML
algorithms apply artificial intelligence to identify hidden patterns in clinical data and make reliable diagnostic
predictions.

Several studies have demonstrated the potential of machine learning in prostate cancer detection and prognosis.
For instance, (Wang et al. 2018) utilized Logistic Regression and Decision Tree models to analyze clinical data,
achieving high predictive accuracy in assessing prostate cancer risk. Similarly, (Zhang et al. 2020) employed
Random Forest algorithms on genomic datasets to predict cancer recurrence, highlighting the effectiveness of
ML in personalized medicine. Furthermore, the integration of ML with medical imaging has significantly
enhanced diagnostic precision. (Zhu et al. 2019) developed a deep learning model that combined magnetic
resonance imaging (MRI) with clinical data, achieving superior classification performance compared to
traditional diagnostic techniques. In addition, (Radovic et al. 2021) implemented ensemble learning methods,
including Random Forest, to analyze multiparametric MRI data, demonstrating improved sensitivity and
specificity in prostate cancer diagnosis.

These findings collectively underscore the transformative potential of machine learning in enhancing early
detection, accurate diagnosis, and treatment planning for prostate cancer.

Problem Statement

Despite significant medical advancements, the detection and diagnosis of prostate cancer remain challenging
due to issues of under diagnosis and misclassification. Traditional diagnostic methods, including clinical
assessments and imaging evaluations, are often time-consuming, expensive, and dependent on expert
interpretation, which may lead to inconsistent outcomes. These limitations underscore the urgent need for
intelligent and automated diagnostic systems capable of supporting clinicians in decision-making. Machine
learning presents a promising approach for developing predictive models that can efficiently analyze clinical
data, enhance diagnostic accuracy, and provide scalable solutions, particularly in low-resource healthcare
environments.
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Objective (s) of the study:
The basic objectives of this research are as listed below:

1. To source and preprocess a prostate cancer dataset.

2. To analyze feature relationships within the dataset.

3. To implement and train different machine learning models.

4. To compare model performance based on standard evaluation metrics.
5. To recommend the most effective model for clinical application.

Literature Review
Historical Review of Machine Learning

The foundation of artificial intelligence (Al) and machine learning (ML) can be traced back to the 1940s, during
and after World War 11, when researchers began exploring the potential of computers to replicate aspects of
human intelligence. In 1950, Alan Turing introduced the concept of “learning machines” in his seminal work
Computing Machinery and Intelligence, proposing that computers could be designed to emulate human
reasoning and intelligent behavior (Luchini et al. 2021). This idea laid the groundwork for the development of
artificial intelligence as a scientific discipline.

The formal term “Atrtificial Intelligence” was coined in 1956 by John McCarthy, who defined it as the science
and engineering of making intelligent machines. This marked the official beginning of Al research and the
vision of computers capable of performing tasks traditionally requiring human cognition (McCarthy et al. 1956).

The concept of “Machine Learning” emerged shortly thereafter. In 1959, Arthur Samuel introduced the term to
describe the ability of computers to learn from experience without being explicitly programmed (Samuel, 1959).
His pioneering work on a self-learning checkers-playing program demonstrated that computers could improve
their performance through iterative learning — a foundational principle of modern ML.

Over the decades, artificial intelligence has evolved from a theoretical concept into a transformative technology
embedded in nearly every aspect of modern life. Today, Al applications span diverse fields such as robotics,
search engines, law enforcement, autonomous systems, and medical diagnostics. The definition of Al has also
expanded to encompass the performance of cognitive tasks—such as perception, reasoning, and decision-
making—by machines that mimic human intelligence (Bi, Q et al. 2019).

Within the broader domain of Al, machine learning has become one of the most influential subfields, enabling
systems to automatically identify patterns, adapt to new data, and make predictions with minimal human
intervention. ML goes beyond traditional statistical approaches by leveraging vast, multi-dimensional datasets to
discover hidden relationships and optimize outcomes. In the field of healthcare, ML has gained significant
attention for its potential to improve disease prediction, diagnosis, and patient management. It excels in utilizing
large-scale electronic health record (EHR) data, selecting relevant variables, and uncovering complex
interactions among clinical parameters to enhance individualized care (Levin et al. 2018).

Application of Machine Learning in Prostate Cancer Detection

Machine learning (ML) has shown significant potential in improving the detection, classification, and prognosis
of prostate cancer. Traditional diagnostic methods—such as prostate-specific antigen (PSA) testing, digital
rectal examination (DRE), and magnetic resonance imaging (MRI)—though widely used, often suffer from
limitations such as false positives, over-diagnosis, and inconsistent interpretation among clinicians. ML
techniques address these challenges by leveraging large datasets to identify complex, non-linear patterns that
enhance diagnostic accuracy and clinical decision-making (Ahmed et al. 2017).

ML algorithms have been successfully applied to predict prostate cancer risk using clinical parameters such as
PSA levels, patient age, prostate volume, and biopsy results. For instance, (Lawrence et al. 2019) demonstrated
that Logistic Regression and Support Vector Machine (SVM) models could effectively classify patients at high
risk of prostate cancer using clinical biomarkers, outperforming traditional threshold-based PSA analysis.
Similarly, (Gann et al. 2018) developed ML-based risk stratification models that incorporated demographic and
biochemical data, resulting in improved patient screening efficiency.
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The integration of ML with medical imaging, particularly multiparametric MRI (mpMRI), has revolutionized
prostate cancer diagnosis. Algorithms such as Convolutional Neural Networks (CNNs) have been trained to
automatically detect and localize prostate lesions, significantly reducing the dependence on manual image
interpretation. (Zhu et al. 2019) proposed a deep learning model that combined MRI and clinical data, achieving
higher sensitivity and specificity in cancer detection compared to conventional radiological assessments.
Likewise, (Ishioka et al. 2020) utilized ensemble learning methods to classify prostate lesions based on MRI
features, achieving enhanced diagnostic reliability.

In addition to diagnosis, ML has been employed in prognostic modeling to predict tumor aggressiveness,
treatment response, and recurrence probability. For example, (Nitta et al. 2021) developed an ML-based
framework integrating genomic and pathological features to predict biochemical recurrence after prostatectomy.
These models provide clinicians with valuable insights for personalized treatment planning and risk
management.

Research Gap

Several studies have explored the application of machine learning in prostate cancer prediction; however, key
limitations persist that warrant further investigation.

(Chen et al. 2022), in their study “Machine Learning-Based Models Enhance Prostate Cancer Prediction,”
employed four supervised learning algorithms—Logistic Regression, Decision Trees, Random Forest, and
Support Vector Machine—to develop predictive models for prostate cancer. Although the multivariate Logistic
Regression model achieved the highest performance with an AUC of 0.918, the study revealed challenges in
accurately detecting prostate cancer cases that do not present as typical nodular formations. This limitation
suggests that model generalization remains a significant concern in clinical application.

Similarly, (Lee et al. 2019), in “Machine Learning Approaches for Predicting Prostate Cancer Based on Age
and Prostate Specific Antigen Level: Experience from the Field,” utilized SVM, RF, LR, LGBM, and XGBoost
algorithms. Their reported accuracy ranged from 64.4% to 74%, indicating relatively low predictive power. This
outcome highlights the need to explore additional and more advanced algorithms that can improve classification
performance and diagnostic accuracy.

Furthermore, (Sagib Igbal et al. 2016), in “Prostate Cancer Detection Using Deep Learning and Traditional
Techniques,” examined the synergy between deep learning and conventional machine learning models through a
structured approach involving data preprocessing, training, and evaluation. While the integration of traditional
and deep learning methods provided complementary strengths—combining interpretability with pattern
recognition—issues related to data quality, model interpretability, and ethical implications remained unresolved.

Methodology

The methodology of this project involves the evaluation of different machine learning and Deep Learning
models in order to adjudge their effectiveness in early detection of prostate cancer.

The following tools were used to carry out this process

i Kaggle platform
ii. Python 3
iii. Pytorch, Pandas, NumPy, Scikit-learn, Scipy

Kaggle platform is the experimental environment for this project work. Kaggle is actually a cloud-based
ecosystem fully designed for data science and machine learning projects. Kaggle offers robust infrastructure
with access to advanced computing resources, such as GPUs and TPUs, making it suitable for handling of
datasets like prostate and implementing it in machine learning models and deep learning models.

The entire experiment was conducted within a single Jupyter notebook, a versatile tool for interactive computing
that integrates code, visuals, and text in one environment. Python 3 was the programming language employed
for the implementation. Python's extensive ecosystem of libraries such as Pytorch, Pandas, NumPy, and scikit-
learn were inclusive to facilitate preprocessing, model training, and evaluation.
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Figure 1: Methodology

Importation of Dataset
The first step involves obtaining the Prostate Cancer dataset from Kaggle, the dataset was imported into the
python platform for further exploration data analysis and preprocessing.

#data_pth = "/kaggle/input/prostate-cancer/Prostate Cancer.csv"
data_pth = r"c:/Users/LENOVO/Desktop/DATASET/Practices/main_Prostate Cancer.csv"

toolkit = ProjectToolkit(data_ path=data_pth)

Figure 2: Importation of Dataset

Exploratory Data Analysis (EDA)

This section describes the steps taken to load the dataset and preprocess.it for analysis.
Data Loading

The prostate cancer dataset was loaded into Python using pandas. The prostate cancer dataset was uploaded for
further preprocessing.

df = pd.read_csv(toolkit.data_path)

df.head()
Python
id diagnosis result radius texture perimeter area smoothness compactness symmetry fractal dimension
0 1 M 23 12 151 954 0.143 0.278 0.242 0.079
1 2 B 9 13 133 1326 0.143 0.079 0.181 0.057
2 3 M 21 27 130 1203 0.125 0.160 0.207 0.060
3 4 M 14 16 78 386 0.070 0.284 0.260 0.097
4 5 M 9 19 135 1297 0.141 0.133 0.181 0.059

Figure 3: Data Loading
Dataset Information and Statistics

After uploading the dataset, the dataset's structure was reviewed using the info() function in pandas. This offered
a summary of each feature's data type, the count of non-null values, and the dataset's memory usage.
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df.info()
Python
<class 'pandas.core.frame.DataFrame’>

RangeIndex: 10@ entries, @ to 99
Data columns (total 10 columns):

#  Column Non-Null Count Dtype
o id 100 non-null inte4
1 diagnosis_result 100 non-null object
2 radius 100 non-null int64
3 texture 100 non-null int64
4 perimeter 100 non-null intes
5  area 108 non-null intes
6  smoothness 160 non-null floate4
7 compactness 160 non-null floatesd
8  symmetry 10@ non-null floatesa

9  fractal dimension 1@ non-null floatea
dtypes: floate4(4), int64(5), object(1l)
memory usage: 7.9+ KB

Figure 4: Summary of Data information

The describe() function was also utilized to produce summary statistics for the numerical columns. This
provided insights into key characteristics of the dataset, including the mean, standard deviation, and range.
These metrics were essential for understanding the data's distribution and identifying potential outliers or errors.

df.describe().T

Python

count mean std min 25% 50% 75% max

id 1000 5050000 29.011492 1.000 257500 50.5000 75.250  100.000

radius  100.0  16.85000 4.879094 9.000 12.0000 17.0000 21.000 25.000

texture 100.0  18.23000 5192954 11.000 14.0000 17.5000 22.250 27.000

perimeter 100.0 96.78000 23.676089 52.000 82.5000 94.0000 114.250 172.000

area 100.0 702.88000 319.710895 202.000 4767500 644.0000 917.000 1878.000

smoothness  100.0 0.10273 0.014642 0.070 0.0935 0.1020 0.112 0.143

compactness  100.0 0.12670 0.061144 0.038 0.0805 0.1185 0.157 0.345

symmetry  100.0 0.19317 0.030785 0.135 0.1720 0.1900 0.209 0.304

fractal_dimension ~ 100.0 0.06469 0.008151 0.053 0.0590 0.0630 0.069 0.097

Figure 5: Summary statistics for the numerical columns
Encoding of the Diagnostic_Result

In datasets like the one used for this research work where the diagnosis_resultis labeled as ""M"* or "'B"", these
labels typically represent target variable:

M= Malignant indicating the presence of cancerous tumor which tends to grow uncontrollably and invade
surrounding tissues.

B= Benign indicating that tumor is not cancerous which usually localize and does not spread.

M is coded 1 while B is coded 0 as shown in the figure below.

encoded df = toolkit.EncodeCategoricalColumn(df, df.select dtypes(include="0").columns)

encoded_df.head()
Python

Encoded Features: {'diagnosis_result': {@: 'B', 1: 'M'}}

diagnosis_result radius texture perimeter area smoothness compactness symmetry fractal_dimension

0 1 23 12 151 954 0.143 0.278 0.242 0.079

1 0 9 13 133 1326 0.143 0.079 0.181 0.057

2 1 21 27 130 1203 0.125 0.160 0.207 0.060

3 1 14 16 78 386 0.070 0.284 0.260 0.097

4 1 9 19 135 1297 0.141 0.133 0.181 0.059
GSJ© 2025
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Figure 6: Encoding of Diagnosis Result.
Data Visualization

Data visualization is the graphical representation of data and information. It transforms complex datasets into
easily interpretable visual formats, enabling a better understanding of patterns, trends, and relationships within
the data. In the context of machine learning, data visualization plays a crucial role in exploratory data analysis
(EDA), model evaluation, and result presentation.

Data Preprocessing

Data preprocessing is a crucial step in preparing datasets for machine learning models. It involves cleaning,
transforming, and scaling the data to ensure it is suitable for training.

Scaling the Data

The features were standardized using z-score normalization to ensure they had a mean of 0 and a standard
deviation of 1. Scaling was necessary to prevent features with larger magnitudes from dominating and causing
biased predictions. Moreover, models that rely on optimization techniques, such as gradient descent, perform
better with scaled data as it enhances convergence speed.

The standardization was performed using the following formula:

X—U
7 =
o
Where:
e x is the original feature value,
e u isthe mean of the feature,
e o is the standard deviation of the feature,

e zis the scaled feature.
This transformation ensures that each feature has:

e Ameanof0:u=0,
e Astandard deviation of 1: ¢ = 1.
The scaling was done as follows:

# Scale data (using zscore), split data into X and y
scaled_X, y = toolkit.ScaleData(encoded_df.drop("diagnosis_result", axis=1), SS=True), encoded_df["diagnosis_result"]

Python

scaled X
Pythan

radius texture perimeter area smoothness compactness symmetry fractal dimension

0 1.266830 -1.205746 2301611 0.789417 2.764210 2.486970 1.594151 1.764464
1 -1.617011 -1.012208 1.537520 1.958830 2.764210 -0.784061  -0.397314 -0.948199
2 0.854853 1.697335 1410172 1.572169 1.528655 0.547364 0.451507 -0.578290
3 -0.587068 -0.431591 -0.797201 -0.996139 -2.246650 2.585594 2.181796 3.983916
4 1617011 0149025  1.622419  1.867666 2.626926 0.103555 -0.397314 -0.701593
95 1.266830 -0.431591 1495071  1.763927 -0.805170 0.070681 0.549448 -1.071502
96 1.060841 -0.818669 -0.797201 -0.791806 0.155817 -0.915560 -0.103491 0.161527
97 0442876 1.697335 -1476393 -1.282205 -0.050109 -1.211432  -1.899074 0.531435

Figure 8:Scaling the Data Using Z-score
Data Splitting

The dataset was divided into training and testing sets while preserving the original proportions. This ensures the
model is trained and tested on representative data. Subsequently, the training set was further partitioned into
training and validation sets to facilitate model evaluation during training. The splitting was performed using the
train_test_split method.

GSJ© 2025
www.globalscientificjournal.com



GSJ: Volume 13, Issue 11, November 2025
ISSN 2320-9186 422

Xtrain, Xtest, ytrain, ytest = train_test_split(scaled_X, y, test_size=.2, stratify=y, random_state-toolkit.
random_state)

print(Xtrain.shape, Xtest.shape)

Python

(80, 8) (20, 8)

Figure 9: Data Splitting
Table 1. Distribution of Train Data Split

X_train Y _train
No. of Samples No. of Features No. of Samples
80 8 80

Table 2. Distribution of Test Data split

X _test Y _test
No. of Samples No. of Features No. of Samples
20 8 20

The dataset was split into training and testing sets in an 80-20 ratio, with stratification to maintain class balance.

Modeling

The modeling process involved applying eight machine learning algorithms alongside a deep learning algorithm
to the prostate dataset to predict outcomes. The machine learning models served as benchmarks to validate the
performance of the deep learning model on the training data. Each machine learning algorithm was tested to
establish baseline performance, leveraging its unique strengths and mathematical principles. The machine
learning models used are as follows:

SVC, LogisticRegression,  DecisionTreeClassifier,  KNeighborsClassifier, = RandomForestClassifier,
XGBClassifier, LGBMClassifier, CatBoostClassifier

model 1ist = [SVC, DecisionTreeClassifier, KNeighborsClassifier,
RandomForestClassifier, LogisticRegression, XGBClassifier,
LGBMClassifier, CatBoostClassifier]

pred pre model f, model score f = toolkit.TrainMLModelInFold(Xtrain, ytrain, Xtest, ytest, model list, 5)

sve: 1o | s/5 [0e:01<00:00, 2.52it/s]
pecisionTreeclassifier: 1o0% || 5/5 [ce:01<00:00, 4.68it/s]
kneighborsclassifier: 100%| [ s/5 [e0:01<ee:00, 3.55it/s]
RandomForestclassifier: 100% || /5 [c0:08<00:00, 1.74s/it]
Logisticregression: 100%| NN 5/5 [00:01<00:00, 2.72it/s]
xcBclassifier: 100%| [N 5/5 [e0:04<00:00, 1.21it/s]
Leemclassifier: 100%|NNEENEI s/5 [00:04<00:00, 1.10it/s]
catBoostclassifier: 100%| | NI s/5 [00:48<00:00, 9.75s/it]

Figure 10: Machine Learning Development

Deep Learning Model Implementation
The deep learning model, built using PyTorch for binary classification, implements a fully connected neural
network architecture adaptable for multiclass classification tasks. The architecture features dense layers utilizing
the Rectified Linear Unit (ReLU) activation function. Both the input and hidden layers employ ReL U activation
(as described in Equation 1) to introduce non-linearity, enabling the model to effectively capture complex data
patterns.

ReLU(x) = max(0, x) (D)
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A softmax activation function is applied in the output layer to convert raw outputs into probabilities, ensuring
they sum to 1 and represent the predicted class probabilities for each

category. To address overfitting, dropout layers with a 30% dropout rate were incorporated. During training,
8:‘.?
SOftm&X(Z‘f) = =
k=1 €
Where:
* z;: Logit (raw score) for the j-th class.
« €% Exponential of the logit z;.

C .. e
o Y . ;€% Normalizing factor that ensures the sum of probabilities equals 1.

these layers randomly deactivate 30% of neurons, enhancing the model’s generalization ability and improving
its capacity to learn robust patterns.

The model is structured as follows: The Input Layer accepts the input features, with the shape determined by the
dataset. These hidden layers are activated using the ReLU (Rectified Linear Unit) function, with a Dropout rate
of 0.3 to prevent over fitting. The Output Layer has a number of neurons equal to the number of classes in the
dataset. It uses the Softmax activation function, which converts the raw output values into probability scores for
each class.

3.5.1 Deep Learning Model Parameters
The model was compiled and trained using the following parameters:

Optimizer: The Adam (Adaptive Moment Estimation) optimizer was utilized. Adam demonstrates superior
performance compared to other optimizers, although its effectiveness may vary depending on the architecture.
Adam is a widely used optimization algorithm in deep learning, combining the strengths of AdaGrad and
RMSProp. It excels in handling sparse gradients and non-stationary objectives, making it a robust and reliable
choice for training neural networks.

Loss Function: The model utilized sparse categorical cross-entropy as the loss function, which is well-suited
for multiclass classification tasks. This loss function is particularly effective when target labels are encoded as
integers (e.g., 0, 1, 2, ..., n—1n-1 for nn classes) rather than one-hot encoded vectors.

The sparse categorical cross-entropy loss can be defined as:

L(y,y) = - Zyz -log(y:)
i1
L(y, ) = — > i - log(i;)

i=1
Where:
yi is the true label for class i (one-hot encoded).
yi” is the predicted probability for class iii, obtained using the softmax activation function.

For sparse categorical Cross entropy, the target labels y is not one-hot encoded. Instead, they are just integer
values representing the class index for each sample.

Evaluation Metric: Accuracy, which measures the proportion of correctly classified instances.

The model was trained for 20 epochs with a batch size of 32, and early stopping was employed to prevent over
fitting. Additionally, learning rate reduction was applied when the validation performance plateaued, allowing
the model to refine its learning.
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result, tst logit, test_prob = toolkit.Train DL MODEL(Xtrain, ytrain, Xval, yval, Xtest, ytest)

Python
Epoch 1/2@, Train Loss: 1.8349, val Loss: ©.6498, Val Accuracy: ©.6111
Epoch 2/2@, Train Loss: 1.8252, val Loss: ©.6462, Val Accuracy: ©.6667
Epoch 3/2@, Train Loss: 1.7631, Val Loss: ©.6432, Val Accuracy: ©.6667
Epoch 4/20, Train Loss: 1.8148, val Loss: ©.6409, Val Accuracy: ©.6667
Epoch 5/2@, Train Loss: 1.8129, val Loss: ©.6387, Val Accuracy: ©.6667
Epoch 6/2@, Train Loss: 1.7594, val Loss: ©.6361, Val Accuracy: ©.6667
Epoch 7/2@, Train Loss: 1.8348, val Loss: ©.6336, Val Accuracy: ©.6667
Epoch 8/2@, Train Loss: 1.6746, Val Loss: ©.6313, Val Accuracy: ©.6111
Epoch 9/20, Train Loss: 1.7@95, Val Loss: ©.6294, val Accuracy: ©.6111
Epoch 18/20, Train Loss: 1.6274, Val Loss: ©.6278, Val Accuracy: 9.6111
Epoch 11/2@, Train Loss: 1.7763, Val Loss: ©.6261, Val Accuracy: 9.6667
Epoch 12/2@, Train Loss: 1.6879, Val Loss: ©.624@, Val Accuracy: 9.6111
Epoch 13/2@, Train Loss: 1.7135, Val Loss: ©.6220, Val Accuracy: 9.6111
Epoch 14/2@, Train Loss: 1.5574, Val Loss: ©.6200, Val Accuracy: 9.6111
Epoch 15/2@, Train Loss: 1.5286, Val Loss: ©.6181, Val Accuracy: 9.6111
Epoch 16/2@, Train Loss: 1.5693, Val Loss: 8.6166, Val Accuracy: 9.6111
Epoch 17/2@, Train Loss: 1.5036, Val Loss: ©.6152, Val Accuracy: 9.6667
Epoch 18/2@, Train Loss: 1.6609, Val Loss: ©.6138, Val Accuracy: 9.6667
Epoch 19/2@, Train Loss: 1.6476, Val Loss: ©.6121, Val Accuracy: 9.6667
Epoch 28/20, Train Loss: 1.4748, Val Loss: 8.6106, Val Accuracy: 9.6667

e

Figure 11: Deep Learning Training Model

After training the models, their performance was evaluated using several metrics, which provide insights into
how well the models classify instances into the correct categories. These evaluation metrics help to understand
the strengths and weaknesses of each model.

Machine Learning Model Performance

The performance of the selected machine learning models in predicting prostate cancer was evaluated using
metrics such as accuracy, precision, recall, F1-score, and ROC-AUC.

Table 3: Model Performance Chart

Models Test Accuracy Test Precision Test Recall Test F1
SvC 0.68 0.70 0.80 0.75
Decision Tree Classifier 0.71 0.73 0.82 0.77
K-Neighbors Classifier 0.62 0.65 0.78 0.71
Random Forest Classifier 0.75 0.73 0.91 0.81
Logistic Regression 0.71 0.71 0.85 0.78
XGBClassifier 0.75 0.73 0.91 0.81
LGBMClassifier 0.74 0.75 0.85 0.80
CatBoostClassifier 0.75 0.73 0.91 0.81
Deep Learning 0.8333 0.8667 0.9250 0.8148

Comparing the performance of the various models trained you can possibly see how each of the models
performed with respect to the testing results seen. Deep learning model seems to show more level of accuracy
than the other model.

Conclusion

The integration of machine learning models into prostate cancer prediction has significantly enhanced diagnostic
accuracy and patient management. This research has demonstrated that machine ensemble algorithms such as
Random Forests, XGB classifier and catBoost classifier and Deep learning outperformed traditional classifiers
in terms of accuracy, precision, recall, and ROC-AUC. Their superior performance is attributed to their ability
to handle complex, non-linear data relationships and minimize overfitting through feature aggregation and
boosting techniques.

Recommendation

In the future, a deep learning image-based analysis for MRI/biopsy image-based prostate cancer detection
should be considered, a hybrid approach which combines ensemble learning with deep learning with strong
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explainability technique can provide the most accurate and clinically reliable prostate cancer prediction and in
subsequent research work the dataset used will be localized in place of online dataset.
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