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Abstract

Topological properties on strongly B - convergent sequence space of Maddox were studied. The
strongly B - convergent sequence space of Maddox and its Stone-�� ech compactification, �o
were characterized as ��, Quasi - �� and Baire space. It is shown that �o and Borel set �� in �o
are Baire spaces. Finally, the Stone �� ech compactification of linear strongly B- convergent
sequence space of Maddox were characterized as �� compactification by continuum hypothesis.
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INTRODUCTION

The classical topological spaces of all bounded, convergent, null, absolute p-summable sequence

and space of finite sequences were denoted by ��� �� ��� ��and��� . These spaces are metric

spaces and they are in sense the simplest of all metric spaces and their structures have been well

understood for many years back. Some topological notions such as; separability, continuity,

compactness, were studied for these classical sequences spaces. Some of these spaces were

extended to strongly B-convergent to zero, strongly B-convergent and strongly B-bounded

sequences spaces of Maddox. As a result of such extensions, recent works in [(Aydin and Basar,

2014), (Malkowsky and Basra, 2017), and (Eloi and Micheal, 2017)] revealed the study of some

topological properties. Motivated in this line, this paper studies separability, continuity,

compactness, complete regularity and Stone-Čech compactification of the extended sequence

spaces of Maddox and report where some of these properties fail to hold.
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Notations

The following notations would be found necessary in the next discussions:

i. �� � � he � e�� �e���� � � �� � � ��� ���

ii. � � � he � e���e���� � � �� � � � ��� ���� � � ��.

iii. �� � � e � e� � �
�t��e���� � �

iv. � � � he � e� � ��t
� �e����� � ��

See (Nakano, 1951), (Simons, 1965) and by (Maddox 1977).

Also, we list the fundamental properties of Maddox’s sequence spaces [B,p]o, [B,p] and [B,p]∞.

The definition of the spaces here can be found in (Malkowsky, 2017), special cases were studied,

for instance, in (Velickovic, 2011).

Let� � ������t
� be a sequence of positive reals, e � � ��� � � h���� . Then we write

�e�� � h�e�������t
� , ����e��� � ��t

� ���� �e����for� � �� and���e��� � ����e�����t
� ,

provided that all the series converges, and ������ � he � �����e��� � ��� , �� � � he �

�����e t h���� � ���������h��� ��� ��� ��� � he � �����e��� � ��� , are the set of

sequences that are strongly B-convergent to zero, strongly B-convergent, and strongly B-bonded.

If e � �� � � h���h � ��݅h����e t h���� � �� is referred to as a strong B-limit, or [B,p]-limit,

of the sequence x. We writee� � h �� � ݅� lim
���

��h�e t h���� � �, condition for the uniqueness

of the [B, p] – limits of the sequences in [B, p] and of convergent sequences were given in (Cafer,

2014) for a certain class of matrices B. Let A denotes the class of all infinite matrix � �

h��������t
� for which there exist a positive integer M such that

i. ��� � ��������� � t ����������� � �

ii. ����� t ��� � ��� � ��t � � � ��.

It is clear from the definition of the sets

������� �� � ��� ������� h��h ��� ��� � �� � ��� ��� ��� � ��� ���� �th �� � is not included

in ��� ���. In general,
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Maddox’s sets are obtained as a special case of the above sets as follows;

�� � � �� ��� ��� � ����� � he � �� �݅�
���

�e���� � �� �

��� � � � � e � �� �݅�
���

�e� t h��� � � ��� ���� h � � �

��� ��� � �� � � e � �� �
�t��e���� � � �

� � �t� �t���� � �� � � e � �� �݅�
���

� t
� ��t

� �e�� ��� � � �

�t� � � � � � he � �� �݅�
���

� t
� ��t

� �� e� t h��� � � ��� ���� h � ��,

��t� ��� � �� � � he � �� �
�t�� t

� ��t
� �� e����� � ���

� � �� � ������� � � � � he � �� ��t
� �� e���� � ��.

where � denotes the vector spaces of all complex valued sequences.

RESULTS

The following results clearly show the existence and uniqueness of Stone �� ech

Compactification of linear strongly B- convergence sequence space of Maddox. The result is

divided into three parts , part A compare some topological properties on strongly B- convergent

sequence space of Maddox, part B characterize the space and its Stone ��ech compactification as

�� , Quasit �� and Baire space. It is shown that the Borel set �� in �o is a Baire space. Lastly

part C characterizes the Stone-Čech compactification �o of the Maddox space o as ��

compactification.

A. Comparative study of some topological properties on Maddox space � of strongly B –

convergent and its Stone-Čech Compactification ��

Theorem 4.1: suppose � and � are Maddox spaces of Natural and Rational components

repectively. Then, �� is continuous image of ��.

Proof: Let � be Maddox space of Natural components and � be Maddox space of Rational

components. Then, � is completely regular. Let denotes the Stone-Čech compactification of

����� . Since component of � is not connected, implies that �� is connected. Also, since � is

not locally compact, then � is not subspace of ��. Hence � and � have the same cardinality, i.e
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� � � � therefore, � a bijection from � to � � ��. Therefore � is a discrete space, certainly, �

is continuous. Therefore, � a continuous extension �� of � from �� to ��. Therefore, ������ is

compact in �� , and also closed in �� .We note that � � ������ , therefore, it follows

that�� �� � ��,which shows that �� is a continuous image of ��.

Theorem 4.2: Suppose �� is a Stone-Čech compactification of a space Y with the discrete

topology. Then Y is extremely disconnected.

Proof: Suppose � � ���, where O is an open subset of Y and, if � �� � � � �� , then, every

�� of F must have an intersection point with an open set O, since A and B are not disjoint, then

� � �����.

Conversely, if �� ��� ������ � � , then ����� � �� . Therefore, �� is extremely

disconnected provided that ��� � �� , then we have ������ � ��, so �� is zero dimensional. In

fact, if � � ���� ��� � �, then ����� � �� and ����� � �.

Theorem 4.3: Suppose � � � is a subspace of topological space Y, then every bounded

continuous real-valued function g on A has a bounded continuous extension to��.

Proof: If A is a subspace of Y and g is a bounded continuous real-valued function on A and

suppose ĝ is a bonded continuous extension of g on Y, then by the construction of ��, there exist

a bounded continuous extension ĝt of ĝ defined on �� . It is not difficult to see that ĝt is a

bounded continuous extension of g defined on ��.

Conversely, suppose that g has a bounded continuous extension � defined on �� , then

the restriction of � on Y is represented by �t .Therefore it is observed that �t is a bounded

continuous extension of g on Y.

Theorem 4.4: Every bounded continuous real-valued function on the subspace � � � can be

extended to a bounded continuous real-valued function defined on Y iff ����� � ��.

Proof: Suppose g is every bounded continuous real-valued function on A and has a bounded

continuous extension ĝ on Y. Hence, g must have a bounded continuous extension ĝton ��. This

is observed that g has a bounded continuous extension defined on �����, which is unique. Since
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�� � � ����� and ����� is compact Hausdorff space, then����� � �� . Conversely, suppose

����� � ��. Then, every bounded continuous real-valued function g on A has a unique bounded

continuous extension ĝ defined on ��, and also on �����. By Tietze’s extension theorem ĝ has a

bounded continuous real-valued extension ĝt defined on �� . By theorem 4.3 above, it follows

that every bounded continuous real-valued function A has a bounded continuous extension on Y.

Corollary 4.1: Suppose � � � is a compact subset of Y, then every bounded continuous real-

valued function on A can be extended to a bounded continuous real-valued function on Y.

Proof: Let A be a compact subset of Y, then ����� � � and �� � � . Therefore, ����� � ��

and from theorem 4.4 above, every bounded continuous real-valued function on A has a

bounded continuous extension on Y.

Theorem 4.5: If � � � is clopen subset of Y, then ����� and ����� � � are disjoint

complementary open subset of ��.

Proof: Suppose A is clopen subset of Y, then � � � is clopen in Y. So, there exists a bounded

continuous real-valued function � on Y such that � � � � and � � � � � t . Indicating that

every bounded continuous real-valued function on Y has a unique bounded continuous extension

on ��, and if � is the unique bounded continuous extension of �,

then � � � � and � ���� � � � � t . Provided that�� � � �� , implies that ����������� �

� � �� (4.1)

Therefore from (4.1) above, we see that ����� and ����� � � are disjoint complementary open

subsets of ��.

Theorem 4.6: Suppose e � � is an isolated point of Maddox topological space Y. Then x is an

isolated point of ��.

Proof: Let e be an isolated point of Y and since Y is �t, { e } is clopen in Y. Then by Theorem

(4.5) above, ����he� is clopen in �� . However, since �� is Hausdorff, then ���� e � he� .

Therefore, x is an isolated point of ��.
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Theorem 4.7: If Stone-Čech compactification �� of topological space Y is connected, then Y is

connected.

Proof: Suppose ��is connected. Let M be a proper subset of � � � is clopen in Y. By Theorem

(4.5) above, ����� is clopen in ��and ���� � � � ������ � �. It then follows that ����� �

��, which contradict the fact that �� is connected. Therefore Y is certainly connected.

Conversely, suppose Y is connected. Let � � �� ��� � be clopen, and hence �� � � is

clopen. Since �� � � �� and it follows that both �� � � and A contains e � �. Thus ��� � �

which is clopen in Y. This leads to contradiction of the hypothesis that Y is connected. Hence ��

is connected.

Theorem 4.8:� � �� is open subset of �� iff Y is locally compact.

Proof: Suppose Y is locally compact. If e � � and A is a compact neighborhood of e � � .

Hence,� an open set � � � � e � � � �. So, A is a compact subset of �� and hence is closed,

provided �� is Hausdorff. Sice � � � and open in Y, � an open set� � �� � ��� � � � �. It

is clear that ������� � ����������� � ����� . If �e � ����� , then every open set � � ��

which contains x, also contains a point of M. Hence, �� ��� � ������� where ��� � �

and open. But since �� � � �� , every nonempty open set has a non-empty intersection with Y.

Hence, ������� � � and it follows that e � ��������� and ������� � ����� .

Therefore,� � ����� � ������� � � � � and Y has to be open.

Conversely, if Y is open in ��and �� is a compact Hausdorff space, then �� is regular.

If h � ��, then every neighborhood of h contains a closed neighborhood of x, Y, being open, is a

neighbourhood for each h � � . Therefore, each h � � has a compact neighborhood in Y, since

closed sets are compact in ��. So, Y is locally compact.

Theorem 4.9: If Y is a discrete Maddox metric space and �� the Stone-Čech compactification of

Y, then �� is not a metric space.

Proof: Suppose ��is a metric space. Let ���� denote the image of � � ��. Since Y is discrete,

then is not compact, so � a sequence � � he����� in Y which has no convergence subsequence

��� � h���. Let ��� � � � �� and consider the points e�t � �tt�����. From �t � he�t� � �,
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the sequence �t contains no convergent subsequence. For this �t � � is a closed subset of Y.

Now, we define the real function ���t � � � ���t� by � e�t � ht� ��� ��䁞�tt
�� ��� ��䁞� ��� � � �.

Since �t contains no convergent subsequence, the function ���t � � is continuous and since

�t � � is a closed subset of discrete metric space Y, by using Tietze’s extension theorem, we

can extend the function, to a continuous function ĝ��t � � . Now, the function ��tt has a

continuous extension ĝ on the space �� . Since ĝ ��� � ��tt ��� � � ��� � ht� ��� ��䁞�tt
�� ��� ��䁞�

and ��� � �, for this, the function ĝ cannot be continuous at the point y, This is a contradiction,

which shows that �� is not a metric space.

B. The characterizations of the Stone-Čech compactification of the linear strongly B-

converrgent sequence space of Maddox as Oz space, Qausi-Oz space and Baire Space.

LEMMA 4.1: (Blair R. L. 1976). A space � is an Oz-space iff every regular closed subset of � is

a zero-set in �.

LEMMA 4.2: (Rudd D. 1975). For a zero-set � of a space � , the following properties are

satisfied.

i. ����� is a zero-set of ��

ii. � a real-valued continuous function � on Y which satisfies the following properties

a. � � �tt �

b. if a subset � of � is completely separated from�, then inf h� e �e � �� � �

Theorem 4.10: For an Oz-space �, the following are satisfied

a. �� is Oz

b. For each regular closed subset � of �, � a sequence h�݅�݅ � �� of regular open subsets of �

which satisfies the following properties

i. � � �݅ ��� ���� ݅ � �

ii. For any regular open subset � of � contains in �, � some �݅ � �݅ � �
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Proof: ��� � ���. Suppose K is a regular closed subset of Y. ����� is a regular closed subset of

�� . Hence ����� has a countable neighborhood basis h�݅�݅ � �� consisting of regular open

subsets of �� , since �� is a compact Oz-space, for each ݅ � �� ��h �݅ � �݅�� . Then, we shall

show that the sequence h�݅�݅ � �� has the properties (i) and (ii) above. (i) is obviously satisfied.

(ii) Let � be a regular open subset of �containing �, then � and � � � are completely separated

provided that� and � � � are regular closed subsets of an Oz-space � . Hence ����� � �� .

Therefore, for some i, ����� � �݅ � ��. Thus �݅ � � for some݅. Hence (ii) is satisfied.

��� � ���. Suppose � is a regular closed subset of �� . Then � � ��� is a regular closed

subset of � . Hence � a sequence h�݅�݅ � �� of regular open subsets of � which satisfies the

properties (i) and (ii) above. Then it is obvious that ����� � � � �h�݅
��݅ � �� . Hence N is a

zero-set of ��, since �� is normal.

Corrollary 4.2: For a normal space �, the following are equivalent;

i. �� is Oz

ii. Every regular closed subset of � has a countable neighborhood basis.

Theorem 4.11: Suppose �� is Oz, then for any regular closed subset �of � , ��� is relatively

pseudocompact.

Proof: Let � be a regular closed subset of �. Suppose that ��� is not relatively pseudocompact.

Then, we shall show that the condition (b) in the theorem 4.10 above is not satisfied. To do this,

let h�݅�݅ � �� be a sequence of regular open subsets of �containing�. Since ��� is not relatively

pseudocompact, then ������������� � ��� is nonempty. Suppose e is a point of

������������� � ���, it is obvious that e � ������݅ � �� for each ݅ � � . Since e � ��, there

exist a discrete sequence �݅ � �݅ � � for each ݅ � � . Now, let

� � � �� h�݅�݅ � ��Y��hF_i�i�w�. Then, U is a regular open subsets of �containing�. But U

does not contain any family of h�݅�݅ � �� by the construction. Therefore ��� is relatively

pseudocompact.

Theorem 4.12: Suppose �� is of countable type, then the following are satisfies:

i. �� is Oz
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ii. For any regular closed subset �of �, ��� is a relatively pseudocompact zero-set.

Proof: ݅ � ݅݅ , this imply that � must be Oz, ��� is a zero-set for any regular closed subset

�of �. Then by theorem 4.11 above, this implication is obvious.

�݅݅� � �݅�. Let A be a regular closed subset of ��. Then ��� is a regular closed subset of Y. So,

������� is a relatively pseudocompact zero-set of � . Provided that���� � ������� ��� � ,

hence ���� is a compact zero-set of �� . Therefore, by the assumption that �� is of countable

type, implying that ���� is a �� t set in ��. Hence A is �� in ��.

Corollary 4.3: Suppose � is a real compact space and every closed subset of � has a countable

neighborhood basis, then � is perfectly normal.

Theorem 4.13: Suppose � is a real compact space. Then, the following are equivalent;

i. �� is Oz

ii. Any regular closed subset � of � has a countable neighborhood basis in �.

iii. For any regular closed subset � of � ,then��� is a compact subset which has a countable

neighbourhood basis in �

Proof: Before we provide the proof for this, we need to state the following Lemma below;

LEMMA 4.3: (Skljarenko E.G 1953) For any open subset � of a space � , the equality

��� �� � ��������� holds.

Now, from this Lemma, for any regular closed subset � of � , implies that ����� �

�������������h���� and ����� � � � ������ � ����� � ��� � ������������ � ��� . Thus,

���������� � � � � ��������� . Thus, ���������� � � � � ��������� . Therefore

��������� is �� in �� , since �� is Oz. by Theorem 4.12 above, ��� is relatively

pseudocompact in �. Since � is realcompact, ��� must be compact. Hence ��� has a countable

neighbourhood basis in �.

�݅݅݅� � �݅݅� from lemma 4.3 above,

�݅݅� � �݅� we observe from the lemma 4.4 specified below

GSJ: Volume 8, Issue 9, September 2020 
ISSN 2320-9186 1665

GSJ© 2020 
www.globalscientificjournal.com



10

LEMMA 4.4: Suppose � is a real compact space and � is a closed subset of � . If � has a

countable neighbourhood basis in �, then ����� is a zero-set of �� . We note if � is extremely

disconnected or pseudocompact Oz, then �� is Oz. Otherwise, we have the following theorem:

Theorem 4.14: If �� is Oz, then for each discrete sequence h�݅�݅ � �� of open subsets of Y,

��� � �݅ extremely disconnected for each ݅ � ��.

Proof: We prove this theorem from the contradictory point of view. Suppose �� is not Oz. then

� a sequence �݅�� � � �� �݅�݅ � � � �݅� is not extremely disconnected for each k. For each

k, let �� be an open subset of �݅� such that ���݅��� is not open. Let � �� ������� � � �

obviously A is regular and closed. Then we shall show that the condition (b) of theorem 4.10

above is not satisfied. Therefore let �݅�݅ � � be a sequence of regular open subsets of Y

containing A. then, for each k, � a regular closed subset �� of Y such that �� � ����݅� � �.

Let us designate � � � �� ���� � � . Then � is a regular open subset of � which has no

member of sequence {�݅�݅ � �� which ends the proof.

Corollary 4.4: If every open subset of a space � is not extremely disconnected, then the

following condition are satisfied

i. ��Yis Oz

ii. � is pseudocompact and Oz

Theorem 4.15: Let � be an Oz-space whose Hewitt realcompactification �� is of countable type.

Then, the following conditions are equivalent;

i. �� is Oz

ii. � can be expressed as the union of an extremely disconnected open subset and a closed

relatively pseudocompact subset.

Proof: To prove theorem 4.15 we will need the support of corollary 4.4 above.

�݅� � �݅݅� Suppose M is a family of all extremely disconnected open subsets of Y, then M is

partially ordered by the inclusion relation �. Suppose �݅ is a linearly ordered subset of M. Then,

it is easy to set that �h��� � �݅� � � , hence, using Zorn’s lemma, there exist a maximal

member E of M. So that � � � � �. Let us assume that A is not relatively pseudocompact. Then
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� a discrete sequence h�݅�݅ � �� of open subsets of Y such that �݅�� � � for each i. If �݅ is

extremely disconnected, then �݅�� is also extremely disconnected. But this contradicts the

maximality of E. Hence, each �݅ is not extremely disconnected, therefore by theorem 4.14

above shows a contradiction. Thus A is relatively pseudocompact.

�݅݅� � �݅� . If � � ��� , where E is an extremely disconnected open subset and p is a closed

relatively pseudocompact subset, we shall show that for each regular closed subset X of Y, ���

is Oz. Now, we can show that ��� � �. This follows from the following that:

��� � ��� ��h�� � ��h�� � ��� ��h�� �� � ��h�� �� � ��h��
� ��� ��� ��h�� �� � ��h�� � ��� ��h�� �� � ��h�� � ��� � �

Theorem 4.16: A topological space Y is said to be a quasi Oz-space iff � � � �����

To prove this theorem we need the following definition

Proof: Suppose that � � � h� � � � ������� � �� � � � �� . Thus ���� � ����� � ���� .

Suppose � � � � � , then Y is clearly a quasi Oz-space.

Conversely, suppose � � � is an open subset of Y, then ��� � � ��� � � ��� � �

� � � �����. So, ������ � ����. Thus, � � � ����. Therefore, Y is quasi Oz-space.

Theorem 4.17: For a Oz topological space Y, the following must be satisfied:

i. Y is quasi Oz-space

ii. Every open subset� � � is Z*-embedded in Y

iii. Every dense open subset� � � of Y is Z*-embedded in Y

Proof: ݅ � ݅݅ , suppose � � ����, � a closed subset � � � ��� � � ���. Since M is open,

then ��� ݅�h� � � ����݅�h� � ��� and ��� ݅�h� � � � � � ����� . Hence, M is Z*-

embedded in Y

݅݅ � �݅݅݅� is trivial
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݅݅݅ � �݅�, suppose � � � is any open subset of Y. Let � � ���� � ��� � � then, A is open

and dense in � .We define a map ��� � � by � � � � if � � � and � � � t if � � � �

������ , then g is continuous and �tt � � �� such that M is a zero-set in A. Since � � � is

open and dense in � , � a cozero-set � � � � ��� ��h� � � ��� � �� � ������h� � ��� .

since A is dense in � and ��� � � ������h� � � are regular closed sets in � , so ��� � �

������h� � �. Hence, � � � � � �, therefore, Y is a quasi Oz-space.

Definition 4.2: A topological space � is said to be basically disconnected if every cozero-set

� � � is C*-embedded in �.

Definition 4.3: Let Y be a topological space and � � �Y� is said to be Z*- embedded in � if for

any � � � � �� � � � � � � � � ���.

Definition 4.4: Suppose ���� is the set of clopen sets in a space �. Then � is said to be basically

disconnected iff � � � �����.

Definition 4.5: A completely regular space � is said to be 3 a quasi Oz-space if for any regular

closed set � � �. � a zero-set � � � � � � ������h� � �.

LEMMA 4.5: � � � is said to be dense in Y iff ��� � � whenever � � � � �

Theorem 4.18: Suppose �� is a Stone-Čech compactification of a topological space �. Then ��

is a Baire space.

Proof: Let �݅ � �� be dense and open for each ݅ � � . Suppose � � � � t. By Lemma 4.5

above, ���t � ��A_t��, so, we can choose e݅ � ���݅. Due to the regularity of the space Y,

we can find an open set �t � et � �t � �� �t � ���t. Since �䁞 is dense, �t��䁞 � � . Also,

we find an open set �䁞 � � � �䁞 � �� �䁞 � �t�� 䁞 . By iteration, we find non-empty open set

�݅ � �� � �� �� � ��tt��� � � � . Now, all �� �� are non-empty and nested interval �� �t �

�� �䁞 � � holds. Then, the family h�� �݅� has the finite intersection property, so that

compactness gives �݅�� �݅ � � . By construction, �݅�� �݅ � ���݅�݅ . Therefore, ���݅�݅ � �

which proved that �� is a Baire space.

The theorem 4.19 below provides a result that the Borel set �� in �� as shown in theorem 4.12

and 4.13 above is a Baire space
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Definition 4.6: suppose �o is a Stone-��ech compactification of a topological space .Then o �

�o is said to nowhere dense if the interior of its closure is empty.

Definition 4.7: The space o � �o is of first category, if it is a countable union of nowhere dense

subsets of �o.

Definition 4.8: The space o � �o is of second category, if it is not first category; that is if it

cannot be express as a countable union of nowhere dense subsets of �o .

Theorem 4.19: Every �� t ��h in �� t ����� �o is a Baire space.

Proof : Let �o be a compact Housdorff space and o � �o ݅� ��� h�t�� o � �݅�݅ �݅h� �݅ �

�o open for every ݅ � � and let �݅ � o be dense open for every ݅ � �. Clearly, �o � � ��o is

Compact Housdorff and o � �o is dense. Then ��݅ � �݅ � �o � �o � are open and dense in

�o, since each containsY. Further, there are open set �݅ � �o � such that �݅ � o � �݅ . Since o

is dense in �o � and �݅ is dense in o� each �݅ is dense in �o �� h�t� h�� ���� ��h��݅ � �݅ are

dense in �o. Therefore � � �݅�݅ � �݅ o � �݅ � �݅�݅ � �݅�݅ is countable intersection of

dense open sets in �o � and dense in �o � , By theorem above. Hence, ��o� � �� � � o �

�o � � o � o. Therefore N is dense in o.

C. The characterizations of the Stone-Čech compactification of the linear strongly B-

convergent sequence space of Maddox as GA compactification, using continuum

hypothesis.

From theorem 4.8, since Y is locally compact, then we have the theorem 4.20 below:

Theorem 4.20: The Stone-Cech compactification of locally compact space � such that

|��|� 䁞�� is a GA compactification.

Proof: if � is an open basis for Stone-Cech compactification of locally compact space Y such

that | �� | � 䁞�� . Without loss of generality, if we assume that � is closed under finite

intersections and finite unions. Then, we can define the set

� � ������ � �����t � �݅ � �� for �݅ � ��t�䁞��� and ������ � �����t � � (4.2)
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From (4.2) above, for each pair �������� � ������t � � , we can choose a function � �

� ��� � � � �������� � � and � ������t� � t, by Uryshon function

Suppose � denotes the set of mappings by Uryshon function above such that��� � 䁞�� .

Then, by transfinite induction, we construct for each � � � a

�� � ���t� � ������tt ���� � ���� �tt ���� � � � ������tt ���� � ���� �tt ���� �
� � � (4.3)

Suppose � � � and � � �tt h ���h � ������� � e �e � � is an upper semi-continuous

decomposition of �� , locally compact space of � such that the decomposition space ��� is a

Stone-Cech compactification of locally compact space Y for which ������� is the remainder.

Next, if �� respresent the identity projection map on the space � , and ������ � � defined as

�������tt . Then, ��is continuous and the diagram below is commutes;

�� �� ���

�

As we see that �������� is a homeomorphism. Then, we shall identify ����� and ��������� as

follows:

Let �� � � be the first point of �and �� �
t
䁞
. Also, if every �� have been constructed

�� � � , where � � � such that (4.3) above is satisfied. Then, we follow the following step for

our identifications:

STEP I: Let � � ��� be an open subset of ��� and

� � � � ��t ������tt ��� � � ��� � ������� � �����tt ��� � �� � ������� (4.4)

If we let � � ���, then ����� represent closure of � � ���. Then ��� in (4.4) above will be a

subset of ��������, i.e � � ����, while � is countable. Also, if we choose � � �� f(����), then,

��

�
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�����tt ��� � � ��� � ������� � ��tt ��� � ��� � ������� � ��tt ��� � ��� � ������� �
�����tt ��� � � ��� � ������� � provided that �tt � �� ���� � �

Now, we shall show that � is countable, suppose � is not countable. Then as � � � is

uncountable subset of real numbers, then it must contain one condensation point. Also, it is

obvious that there exist a condensation point �� which is a limit point from the left. Now, if � is

an open Neighbourhood of �� � ��� , � �t � � � � � �t � �� and consequently, �t �

��tt ���� � � � ��� � � � �� ��tt ���� � ��.

Therefore, it follows that, �� � �����tt ���� � � � � �������, and is a contradiction.

STEP II�� a �� � ��t � �� �tt ���� � � ∩�� ��tt ���� � ������� �

�� �tt ���� � ��tt ���� � � � ���������� � � and � � � . Also, as � � ��� � � � 䁞�� ,

since � is locally compact and also open in ���, we can conclude from step I above that;

��� � � ��t ��� �tt ���� � � � �� ��tt ��� � ������� � �� �tt ��� � ��tt� ��� ��
�� � ����� � ��.䁞�� � 䁞��, with this, the choice for �� is possible.

STEP III: Let �� � ��. Then, we need to claim that (4.3) above is satisfied. Let � � � � � � �

and we suppose that; ������tt ���� � ���� �tt ���� � �. Then ���������tt ���� � �

������� �tt ���� � � and also, ������tt ���� � � �� �tt ���� � � � �, since it is easily

observed that ��������� � ���� � �� for each open subset � � ��. Therefore, �����tt ���� �

�� �tt ���� � � � � (4.5)

Now, if we assume that (4.5) � � is disjoint. We have �����tt ���� � �� �tt ���� � � �

����� � �����tt ���� � �tt ���� � � � ����� � �, STEP II above � ��tt ���� �

�tt ���� � � � � is a contradiction. Therefore, (4.5) � � � �. Now, if we let e �

�����tt ���� � �� �tt ���� � � � �; this show that (4.3) above holds for ��.

STEP IV: Let ɸ � ������tt ���� �� � � . Then, ɸ is a closed base for �� . Also we see that

for �� , �t � ɸ , where �� � �t � � � �� � �t � � � � . Next, we need to show that ɸ is

weakly normal an tt. To do these, we proceed as follows;
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Let �� , �t � ɸ � �� � �t � � . By the fact that �� is compact Hausdorff space, there exist

closed set ��� �t � ɸ � �� � �t � �� � �t � � and �� � �� � �t . From above, since � is

closed under finite intersections and unions, � ��� �䁞 � � � �� � �� � �������� and �t � �t �

������t� and ���� �t � ���� �t � � . Now, if we let �t
� � ɸ � ���� �t � �t

� and �t
� �

���� �� � � . Similarly, we shall find ��
� � ɸ � �� � ��

�and ��
� � �t

� � � . Therefore, �� �

�t
� � ��

� � �t � � and ��
� � �t

� � ��, which shows that, ɸ is a normal closed base.

Next, to show that ɸ is tt –space, we suppose ɸ is tt and Ko� ɸ. We shall Show that cl

{ Ko } = { Ko }, to prove this, let K1� Cl{ Ko } such that k1�{ Ko }. As Ko≠ K1 and ɸ is tt –

space, Ǝ open set Bo, B1� t � Ko�Bo but K1� B1. K1� Cl{ Ko } imply that K1 is a limit point of

{ ko } imply that [BoȠ { Ko } ] � { Ko } ≠ ø (where K1�Bo and Bo� t) � { Ko }�{K1 } ≠ ø

(provided Ko�Bo) � ɸ ≠ ø; which is a contradiction. Hence Cl{ Ko } � { Ko }. As usual { Ko }

� cl { Ko }, then we have Cl{ Ko } = { Ko }.

Conversely, let ɸ be a topological space such that { Ko } is closed set for each Ko�ɸ. To prove

that ɸ is a tt –space, we let K1 ≠ Ko in ɸ. As Cl{ Ko }={ Ko }, we have K1�{ Ko } = cl{ Ko }.

Hence, K1�ɸ\{ Ko } = ɸ\Cl{ Ko}. Similarly, Ko�{ K1 } = Cl{ K1 }�Ko�ɸ�{ K1 } = ɸ�Cl{K1}.

We define Bo = ɸ�{ Ko } and B1 = ɸ�Cl{ K1 }= ɸ�{K1} . Then Bo,B1� t such that K1�BO but

Ko�Bo and Ko�B1 but K1�B1.Hence, ɸ is a tt –space.

Conclusion

In this research work, some topological properties on Maddox topological space � and its Stone-

Čech compactification were compared. Then, the Stone-Čech compactification of linear strongly

B – convergent topological space of Maddox were characterized as Oz space, Qausi-Oz space

and Baire spaces. The study also characterizes this Stone-Čech compactification as a GA

compactification by using continuum hypothesis.
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