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Abstract: 
The study addressed the solution of homogeneous and inhomogeneous linear differential equation systems using 
matrices. The systems of linear ordinary differential equations have important applications,possesspowerful tools in 
study and solvevarious problems in natural sciences, technology and social sciences. The matrices technique has 
been used in solving homogeneous and inhomogeneous linear differential equation systems by generating, 
eigevalues and eigenvectors of coefficient matrices along with many theories, definitions have been introduced in 
order to accelerate the process. 
It has been successfully implemented and found that, the method gives a typical results comparing with other 
analytical methods.However, the drawback of the scheme is the generating of eigenvalues, eigenvector and 
calculating matrices inverseare tedious and sophisticate when the order of coefficients matrices more than3 × 3.   
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1.0 Introduction  
The systems of linear ordinary differential equations have important applications,possess powerful tools in study and 
solvevarious problems in natural sciences, technology;these are extensively employed in mechanics, astronomy, 
physics, chemistry and biology problems. The reason for this is the fact that objective laws governing certain 
phenomena (processes) can be written as ordinary differential equations, so that the equations themselves are a 
quantitative expression of these laws. For instance, Newton's laws of mechanics make it possible to reduce the 
description of the motion of mass points or solid bodies to solving ordinary differential equations. The computation 
of radiotechnical circuits or satellite trajectories, studies of the stability of a plane in flight, and explaining the course 
of chemical reactions are all carried out by studying and solving ordinary differential equations.  
The principal tasks of the theories of ordinary differential equations of linear systems concernthe study of solutions 
of such equations. However, the meanings of such a study of solutions have been understood in various ways at 
different times. The original trend is to carry out the integration of equations in quadratic to obtain a closed formula 
yielding (in explicit, implicit or parametric form. The linear systems of ordinary differential equations (ODEs) arise 
in many contexts of mathematics,  sciences to descript the change or the rate of change in many dynamics 
phenomena. Often, quantities are defined as the rate of change of other quantities (for example, derivatives of 
displacement with respect to time), or gradients of quantities, which is how they enter differential equations. 
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It's worth mentioning, there are many approaches and techniques to solve ODEs of linear systems which describe 
several phenomena in our daily life,and one of these methods is the solution of systems of linear differential 
equations for homogenous and inhomogeneous form and different order. Many of the applications involve the use of 
eigenvalues and eigenvectors in the process of transforming a given matrix into a diagonal matrix. 
Firstly, the study implemented the matrices solution idea using eigenvalues and eigenvectors transforming. However 
the study shows how these processesare invaluable in solving coupled differential equations of both first order and 
second order in homogenous form. Secondly the idea extended to solve inhomogeneous systems for linear 
differential equations form.  
1.1 Definition, Theorems and Properties of Eigen values and Eigenvectors 
The Eigen values and eigenvectors are invaluable tools in solving the linear systems of differential equations which 
well describes many phenomena in natural and social sciences and gives good deep insight into sophisticate 
mathematical problems in all branches of sciences, so in this section we introduced, definitions, theorems and 
properties of eigenvalues and eigenvector in order to simplify the techniques and posses the scientists with good 
background. 
Definition (1.1): Let A be an n × nmatrix.If there is a number λϵℝ and an n-vector x ≠ 0 such that Ax =  λx,  
then we say that λ is an eigenvalue forA, and x is called an eigenvector for Awith eigenvalueλ. 
Definition (1.2):The set of all eigenvectors of A for a given eigenvalue λ is called an eigenspace, and it is written 
Eλ(A). 
Definition (1.3): let A be ann × n matrix. A scalar λ is called an eigenvalue of A if there is an a non zero 
vectorv ≠ 0, called an eigenvector, such that 
Av = λv  (1.1) 
In the other words, the matrix A stretches the eigenvector, v by an amount specified by the eigenvalue. The 
requirement that the eigenvector v be nonzero is important, since  v = 0 is a trivial solution to the eigen equation 
(1.1) for any, scalarλ. Moreover, as far as solving linear ordinary differential equations goes, the zero vector v = 0 
gives u(t) = 0 , which is certainly a solution.  
The Eigen value equation (1.1) is a system of linear equations for the entries of the eigenvector v − provided that the 
Eigen value. 
Let (𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝑣𝑣 = 0    (1.2)  
Where I is the identity matrix of the correct size, for the given λ, equation (1.2) lead us to homogenous linear system 
for v. 
The homogenous linear system has anon zero solution v ≠ 0 if and only if its coefficient matrix 
(A − λI) = 0is singular. 
Definition (1.4): Let A and B are square matrices of the same order. Then, A is said to be similar to B if there exists 
an invertible matrix P such that P−1AP =  B. The matrix P is called a similarity transformation matrix. Note that if 
A is similar to B, then B is similar to A and the two matrices are called similar matrices. 
Definition (1.5)The matrix 𝐴𝐴is diagonalizable if it is similar to a diagonal matrix, that is, there is an invertible 
matrix 𝑃𝑃and diagonal matrix 𝐷𝐷such that 𝑃𝑃−1𝐴𝐴𝐴𝐴 =  𝐷𝐷. In this case we say that 𝑃𝑃is a diagonalizing matrix for 𝐴𝐴 or 
that 𝑃𝑃diagonalizesA. We can be more specific about when a matrix is diagonalizable. As a first step, notice that the 
calculations that we began can easily be written in terms of an𝑛𝑛 ×  𝑛𝑛matrix instead of a 3 ×  3matrix. What these 
calculations prove is the following basic fact. 
Proposition (1.1): A scalar 𝜆𝜆is an eigenvalue of the matrix A if and only if 𝜆𝜆 is a solution to the 
characteristic equation. 
det(𝐴𝐴 − 𝜆𝜆𝜆𝜆) = 0 (1.3) 
Proposition (1.2): If A is a real matrix with a complex eigenvalue  𝜆𝜆 = 𝑢𝑢 + 𝑖𝑖𝑖𝑖 and corresponding 
complex eigenvector 𝑣𝑣 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖, then the complex conjugate 𝜆𝜆− = 𝑢𝑢 − 𝑖𝑖𝑖𝑖is also an eigenvalue with 
complex conjugate eigenvector 𝑣𝑣− = 𝑥𝑥 − 𝑖𝑖𝑖𝑖 
Proof:  
Let the complex conjugate of the eigenvalue equation (1.1). 
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A�v� = Av��� = λv��� = λ�v� 
Using the fact that a real matrix is unaffected by conjugate, so 𝐴̅𝐴 = 𝐴𝐴, we conclude λ�v� = Av�, which is the 
equation for the eigenvalue 𝜆̅𝜆and eigenvector 𝑣̅𝑣. As a sequence, when dealing withreal matrices, we only 
need to compute the eigenvector for one of each complex conjugate pair of eigenvalues. 
Proposition (1.3): A matrix A is singular if and only if 0 is an eigenvalue. 
Proof: 
By definition, 0 is an eigenvalue of A if and only if there is a nonzero solution to the eigenvector equation  
𝐴𝐴𝐴𝐴 = 0𝑣𝑣. Thus, 0 is an eigenvector of 𝐴𝐴 if and only if it has a nonzero vector in its kernel, 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ≠ {0},  
and hence 𝐴𝐴is necessarily singular 
Properties (1.4):IfA is an 𝑛𝑛 × 𝑛𝑛 matrix, then the characteristic polynomial is  
𝑃𝑃𝐴𝐴(𝜆𝜆) = det(𝐴𝐴 − 𝜆𝜆𝜆𝜆) = 𝑐𝑐𝑛𝑛𝜆𝜆𝑛𝑛 + 𝑐𝑐𝑛𝑛−1𝜆𝜆𝑛𝑛−1 + 𝑐𝑐𝑛𝑛−2𝜆𝜆𝑛𝑛−2 … … … … . . 𝑐𝑐0𝜆𝜆 + 𝑐𝑐0                              (1.4) 
The value 𝑃𝑃𝐴𝐴(𝜆𝜆) is a polynomial of degree 𝑛𝑛 is a sequence of the general determinant formula and every 
term is prescribed by a permutation 𝜋𝜋 of the rows of the matrix and equal plus or minus a product of 
𝑛𝑛distinct matrix entries including one from each row and one of each column. The term corresponding to 
the identity permutation is obtained by multiplying the diagonal entries together, which, in this case, is  
(𝑎𝑎11 − 𝜆𝜆)(𝑎𝑎22 − 𝜆𝜆) … . . (𝑎𝑎𝑛𝑛𝑛𝑛 − 𝜆𝜆) = (−1)𝑛𝑛𝜆𝜆𝑛𝑛 + (−1)𝑛𝑛−1(𝑎𝑎11 + 𝑎𝑎22 + ⋯𝑎𝑎𝑛𝑛𝑛𝑛 )𝜆𝜆𝑛𝑛−1 + ⋯            (1.5) 
All of the other terms have at most 𝑛𝑛 − 2 diagonal factors𝑎𝑎𝑖𝑖𝑖𝑖 − 𝜆𝜆, and so are polynomials of degree 
≤ 𝑛𝑛 − 2 in 𝜆𝜆. Thus the equation (1.5) is the only summand containing the monomials 𝜆𝜆𝑛𝑛and 𝜆𝜆𝑛𝑛−1, and so 
their respective coefficients are  
𝑐𝑐𝑛𝑛 = (−1)𝑛𝑛 , 𝑐𝑐𝑛𝑛−1 = (−1)𝑛𝑛−1(𝑎𝑎11 + 𝑎𝑎22 + ⋯𝑎𝑎𝑛𝑛𝑛𝑛 ) = (−1)𝑛𝑛−1trA                                                (1.6) 
Where𝑡𝑡𝑡𝑡𝑡𝑡, the sum of its diagonal entries, is called the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 of the matrixA. The other coefficients 
𝑐𝑐𝑛𝑛−2 … 𝑐𝑐1, 𝑐𝑐0in equation (1.5) are more complicated combinations of the entries of A. However, put 𝜆𝜆 = 0, 
implies that  𝑃𝑃𝐴𝐴(0) = det(𝐴𝐴) = 𝑐𝑐0 , so that the constant term in the characteristic polynomial equals the 

determinant of the matrix. In particular, if A = �𝑎𝑎  𝑏𝑏
𝑐𝑐  𝑑𝑑� is an 2 × 2 matrix, its characteristic polynomial has 

the explicit form 

𝑃𝑃𝐴𝐴(𝜆𝜆) = det(𝐴𝐴 − 𝜆𝜆𝜆𝜆) = det �𝑎𝑎 − 𝜆𝜆  𝑏𝑏
𝑐𝑐  𝑑𝑑 − 𝜆𝜆�⁡= 𝜆𝜆2 − (𝑎𝑎 + 𝑑𝑑)𝜆𝜆 + (𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏) = 𝜆𝜆2 − (𝑡𝑡𝑡𝑡𝑡𝑡)𝜆𝜆 + (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) (1.7) 

Theorem (1.5):  A scalar 𝜆𝜆 is an eigenvalue of the 𝑛𝑛 × 𝑛𝑛  matrix 𝐴𝐴 if and only if the matrix 𝐴𝐴 − 𝜆𝜆𝜆𝜆 is 
singular, i.e. of rank < 𝑛𝑛 . The corresponding eigenvectors are non zero solutions to the eigenvalue 
equation  (𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝑣𝑣 = 0 
Theorem (1.6): Let 𝐷𝐷 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛 }be a diagonal matrix. Then 𝐷𝐷𝑘𝑘 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝜆𝜆1

𝑘𝑘 , 𝜆𝜆2
𝑘𝑘 , 𝜆𝜆3

𝑘𝑘 , … … … . . 𝜆𝜆𝑛𝑛𝑘𝑘 }, 
where k is positive integer. Let’s now consider a 3 × 3 matrix A.If we could find three linearly independent 
eigenvectors 𝑣𝑣1, 𝑣𝑣2 and 𝑣𝑣3corresponding to the eigenvalues𝜆𝜆1, 𝜆𝜆2 and𝜆𝜆3, we would have 𝐴𝐴𝐴𝐴1 =  𝜆𝜆1𝑣𝑣1,𝐴𝐴𝐴𝐴2 =  𝜆𝜆2𝑣𝑣2, 
and 𝐴𝐴𝐴𝐴3 =  𝜆𝜆3𝑣𝑣3 

In matrix form, we have  [𝒗𝒗𝟏𝟏, 𝒗𝒗𝟐𝟐, 𝒗𝒗𝟑𝟑] = [𝒗𝒗𝟏𝟏, 𝒗𝒗𝟐𝟐, 𝒗𝒗𝟑𝟑]�
𝜆𝜆1         0       0
0      𝜆𝜆2       0
0        0𝜆𝜆3 

� =  [𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3] 

Now, set𝑃𝑃 =  [𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3]and 𝐷𝐷 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3].Then 𝑃𝑃 is invertible since the columns of 𝑃𝑃 are linearly 
independent. Multiplying both sides of 𝐴𝐴𝐴𝐴 =  𝑃𝑃𝑃𝑃by 𝑃𝑃−1to the left, we get 𝑃𝑃−1AP =  D. this is a beautiful equation, 
because it makes the powers of 𝐴𝐴 simple to understand. The procedure we just went through is reversible as well. In 
other words, if 𝑃𝑃is an invertible matrix such that𝑃𝑃−1AP =  D.then we deduce that 𝐴𝐴𝑃𝑃 = 𝑃𝑃𝐷𝐷and conclude that the 
columns of 𝑃𝑃are linearly independent eigenvectors of 𝐴𝐴. We make the following definition and follow it with a 
simple but key theorem relating similar matrices. 
Theorem (1.7): Let 𝑣𝑣1, 𝑣𝑣2, . . . , 𝑣𝑣𝑘𝑘be a set of eigenvectors of the matrix 𝐴𝐴such that corresponding eigenvalues are all 
distinct. Then, the set of vectors {𝑣𝑣1, 𝑣𝑣2, . . . , 𝑣𝑣𝑘𝑘}is linearly independent. 
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Proof:Suppose the set is linearly dependent. Discard redundant vectors until we have a smallest linearly dependent 
subset such as 𝑣𝑣1, 𝑣𝑣2, . . . , 𝑣𝑣𝑚𝑚with 𝑣𝑣𝑖𝑖 belonging to 𝜆𝜆𝑖𝑖. All the vectors have nonzero coefficients in a linear combination 
that sums to zero, forwe could discard the ones that have zero coefficient in the linear combination and still have a 
linearly dependent set. So thereis some linear combination of the form 
c1v1 +  c2v2+ . . . +cmvm =  0 (i) 
with each 𝑐𝑐𝑗𝑗 ≠  0 and 𝑣𝑣𝑗𝑗belonging to the eigenvalue 𝜆𝜆𝑗𝑗. Multiply equation (i)by𝜆𝜆1to obtain the equation  
𝑐𝑐1𝜆𝜆1𝑣𝑣1 +  𝑐𝑐2𝜆𝜆1𝑣𝑣2+ . . . +𝑐𝑐𝑚𝑚𝜆𝜆1𝑣𝑣𝑚𝑚 =  0(ii) 
Next, multiply equation (1)on the left by 𝐴𝐴to obtain 
0 =  𝐴𝐴(𝑐𝑐1𝑣𝑣1 +  𝑐𝑐2𝑣𝑣2+ . . . +𝑐𝑐𝑚𝑚𝑣𝑣𝑚𝑚)  =  𝑐𝑐1𝐴𝐴𝐴𝐴1 +  𝑐𝑐2𝐴𝐴𝐴𝐴2+ . . . +𝑐𝑐𝑚𝑚𝐴𝐴𝐴𝐴𝑚𝑚 
That is 𝑐𝑐1𝜆𝜆1𝑣𝑣1 +  𝑐𝑐2𝜆𝜆2𝑣𝑣2+ . . . +𝑐𝑐𝑘𝑘 𝜆𝜆𝑚𝑚𝑣𝑣𝑚𝑚 =  0(iii) 
Now subtract equation(3)from equation(2)to obtain 
0𝑣𝑣1 +  𝑐𝑐2(𝜆𝜆1 −  𝜆𝜆2)𝑣𝑣2+ . . . +𝑐𝑐𝑘𝑘 (𝜆𝜆1 −  𝜆𝜆𝑚𝑚)𝑣𝑣𝑚𝑚 =  0 
This is a new nontrivial linear combination (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐2(𝜆𝜆1 −  𝜆𝜆2)  ≠  0) of fewer terms, that contradicts our choice of 
𝑣𝑣1, 𝑣𝑣2, . . . , 𝑣𝑣𝑘𝑘. It follows that the original set of vectors must be linearly independent. 
Theorem (1.8): If 𝐴𝐴is an𝑛𝑛 ×  𝑛𝑛symmetric matrix, then the following properties are true. 
1- 𝐴𝐴 is diagonalizable. 
2. All eigenvalues of 𝐴𝐴 are real. 
3. If 𝜆𝜆 is an eigenvalue of 𝐴𝐴 with algebraic multiplicity 𝑘𝑘, then 𝜆𝜆 has 𝑘𝑘 linearly independent eigenvectors. That is, 
the eigenspace of 𝜆𝜆 has dimension 𝑘𝑘. 
Theorem (1.9): If the coefficient matrix A is complete, then the general solution to the linear iterative systems 
𝑥𝑥(𝑘𝑘+1) = 𝐴𝐴𝑥𝑥(𝑘𝑘). is given by 
𝑥𝑥(𝑘𝑘) = 𝑐𝑐1𝜆𝜆1

𝑘𝑘𝑣𝑣1 + 𝑐𝑐2𝜆𝜆2
𝑘𝑘𝑣𝑣2 + ⋯𝑐𝑐𝑛𝑛𝜆𝜆𝑛𝑛𝑘𝑘 𝑣𝑣𝑛𝑛  

2. SOLVING SYSTEMS OF FIRST ORDER DIFFERENTIAL EQUATIONS 
Systems of first order linear ordinary differential equations arise in many areas of mathematics and 
engineering, for example in control theory and in the analysis of electrical circuits. In each case the 
basicunknowns are each a function of the time variable 𝑡𝑡. A number of techniques have been developedto 
solve such systems of equations; for example the Laplace transform. Here we shall use eigenvaluesand 
eigenvectors to obtain the solution. Our first step will be to recast the system of ordinary 
differentialequations in the matrix form X ′ =  AX where A is an 𝑛𝑛 ×  𝑛𝑛 coefficient matrix of constants,𝑋𝑋 
is the 𝑛𝑛 × 1 column vector of unknown functions and 𝑋𝑋′  is the 𝑛𝑛 × 1 column vector containing 
thederivatives of the unknowns. The main step will be to use the modal matrix of A to diagonalisethe 
system of differential equations. This process will transform X ′ =  AX into the form 𝑌𝑌′ =  DY where 𝐷𝐷 is 
a diagonal matrix. We shall find that this new diagonal system of differential equationscan be easily 
solved. This special solution will allow us to obtain the solution of the original system. 
Consider a system of ordinary first order differential equations of the form 
𝑥𝑥1
′ = 𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2 + 𝑎𝑎13𝑥𝑥3 + ⋯  𝑎𝑎1𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑏𝑏1 
𝑥𝑥2
′ = 𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 + 𝑎𝑎23𝑥𝑥3 + ⋯  𝑎𝑎2𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑏𝑏2 
𝑥𝑥3
′ = 𝑎𝑎31𝑥𝑥1 + 𝑎𝑎32𝑥𝑥2 + 𝑎𝑎33𝑥𝑥3 + ⋯  𝑎𝑎3𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑏𝑏3 

 .....       ....            ...          ....             .......  
 .....       ....            ...          ....             .......                       
𝑥𝑥𝑛𝑛′ = 𝑎𝑎𝑛𝑛1𝑥𝑥1 + 𝑎𝑎𝑛𝑛2𝑥𝑥2 + 𝑎𝑎𝑛𝑛3𝑥𝑥3 + ⋯  𝑎𝑎𝑛𝑛𝑛𝑛 𝑥𝑥𝑛𝑛 + 𝑏𝑏𝑛𝑛       (3.1) 
Where, aij ∈  ℝ. 
If 𝑏𝑏1 = 𝑏𝑏2 = ⋯ =  𝑏𝑏𝑛𝑛 = 0, the systems are called homogenous and if not the systems are called inhomogeneous   
we can form equation (1-1) as X′  =  A(t)X + B(t) 
Where A(t): I → ℝn×n, B(t): I → ℝn  and Ibeing an Open interval in ℝ. 
If 𝐴𝐴(𝑡𝑡) and B(t)are continuous in  𝑡𝑡 then for any 𝑡𝑡0𝜖𝜖𝜖𝜖 and 𝑥𝑥0 ∈ ℝn , then IVP 

�𝑥𝑥
′ = 𝐴𝐴(𝑡𝑡)𝑥𝑥 + 𝐵𝐵(𝑡𝑡)
𝑥𝑥(𝑡𝑡0) = 𝑥𝑥0

�                                                                                                                                                (3.2) 

The systems (3.1) and (3.2) has a unique solution defined on the interval I   
3.1Space of Solutions of homogeneous systems 
A linearODE is called homogeneous if 𝐵𝐵(𝑡𝑡) ≡ 0 and inhomogeneous otherwise. If 𝑥𝑥′ = 𝐴𝐴(𝑡𝑡)𝑥𝑥 be a homogeneous 
equation the 𝒜𝒜 the set of all solution of ODE in (1-2), this idea produce from the following theorem  
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Theorem (3.1): 𝒜̌𝒜 is a linear space of dim𝒜̌𝒜 = 𝑛𝑛. Consequently if 𝑥𝑥1, 𝑥𝑥2, … … … 𝑥𝑥𝑛𝑛  are  𝑛𝑛 linearly independent 
solution to 𝑥𝑥′ = 𝐴𝐴(𝑡𝑡)𝑥𝑥, then the general solution has the form  

𝑥𝑥(𝑡𝑡) = 𝑐𝑐1𝑥𝑥1(𝑡𝑡) + 𝑐𝑐2𝑥𝑥2(𝑡𝑡) + ⋯𝑐𝑐𝑛𝑛𝑥𝑥𝑛𝑛(𝑡𝑡) 
Where 𝑐𝑐1, 𝑐𝑐2 … … … … … … 𝑐𝑐𝑛𝑛  are arbitrary constant 
3.1.1 The Method Implementations 
 (i) Consider the following first order linear differential equations system.  

𝑦𝑦′ = �
1 − 1    4
3     2 − 1
2    1  − 1 

� 𝑦𝑦 

Find the general solution for the above system 
Solution: 

To find the eigenvalues det(𝐴𝐴 − 𝜆𝜆𝜆𝜆) = det �
1 − 𝜆𝜆 − 1    4
3     2 − 𝜆𝜆 − 1
2    1  − 1 − 𝜆𝜆

� 𝑦𝑦 = 𝜆𝜆3 − 2𝜆𝜆2 − 5𝜆𝜆 + 6 

𝜆𝜆 = 1, 3,−2 

When𝜆𝜆 = 1, we will get 𝐴𝐴 − 𝜆𝜆𝜆𝜆 ⟹ �
 0    − 1    4
3      1     − 1
2        1 − 2 

� �
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3

� = 0 

Therefore −𝑣𝑣2 + 𝑣𝑣3 = 0,  3𝑣𝑣1 + 𝑣𝑣2 − 𝑣𝑣3 = 0, 2𝑣𝑣1 + 𝑣𝑣2 − 2𝑣𝑣3 = 0,  

Thus  𝑣𝑣1 = �
−1
4
1
� 

When 𝜆𝜆 = 3, then an eigenvector can be form as 𝑣𝑣2 = �
1
2
1
�. 

Also when 𝜆𝜆 = −2 then an eigenvector can be form as, 𝑣𝑣3 = �
−1
1
1
� 

Since 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3 are eigenvectors corresponding to distinct eigenvalues, therefore they are linearly independent, and 
hence the general solution to the problem can be written as 

𝑦𝑦(𝑡𝑡) = 𝑐𝑐1 �
−1
4
1
� 𝑒𝑒𝑡𝑡 + 𝑐𝑐2 �

1
2
1
� 𝑒𝑒3𝑡𝑡 + 𝑐𝑐3 �

−1
1
1
� 𝑒𝑒−2𝑡𝑡   

 
(ii) Find the anlytical solution for System of First Order Linear Differential Equations  
Let the first order linear differential equations of the form 

x1
′ = 3x1 
𝑥𝑥2
′ = 5𝑥𝑥2 

𝑥𝑥3
′ = −2𝑥𝑥3 

Solution: 
From the principle of the general form of the solution is 
𝑥𝑥′ = 𝑘𝑘𝑘𝑘is 𝑥𝑥 = 𝑐𝑐𝑖𝑖𝑒𝑒𝑘𝑘𝑘𝑘 , therefore the solutions of the system is  

𝑥𝑥1 = 𝑐𝑐1𝑒𝑒3𝑡𝑡  
𝑥𝑥2 = 𝑐𝑐2𝑒𝑒5𝑡𝑡  
𝑥𝑥3 = 𝑐𝑐3𝑒𝑒−2𝑡𝑡  
The matrix form of the system of linear differential equations for above example is  
𝑋𝑋′ = 𝐴𝐴𝐴𝐴 , where A is square matrix such that  
 

�
𝑥𝑥1
′

𝑥𝑥2
′

𝑥𝑥3
′
� = �

3  0  0
0   5   0

0  0 − 2
� �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

�, thus A is diagonal matrix, then the solutions of the system  𝑋𝑋′ = 𝐴𝐴𝐴𝐴 can be obtained as 

above solutions 
If A is not diagonal matrix, so this need more procedures, first we try to find the matrix P that diagonalizesA such 
the change of variables arise  
X =  PH   and  X′ =  PH′produces 

PH′ = X′ = 𝐴𝐴𝐴𝐴 = 𝐴𝐴PH ⇒ H′ = P−1𝐴𝐴PH 
Where P−1𝐴𝐴P is a diagonal matrix. 
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(iii) Solve the following the system of linear differential equations 
𝑥𝑥1
′ = 3𝑥𝑥1 + 2𝑥𝑥2 , 𝑥𝑥2

′ = 6𝑥𝑥1 ± 𝑥𝑥2 
Solution: 
To find the matrix H that diagonalizes A =  � 3   2

6  − 1�, the eigenvalues of 𝐴𝐴 are𝜆𝜆1 = −3, 𝜆𝜆2 = 5  and the 

corresponding eigenvector ℎ1 = � 1
−3� and ℎ2 = �11� respectively, then  H = �ℎ1,ℎ2� = �1      1

−3   1� 
 

H′ = �
1
4
−1
4

3
4

1
4

�. Therefore to diagonalizes A as   H′AH =. �
1
4
−1
4

3
4

1
4

� . �3       2
6  − 1� . �1      1

−3   1� = �−3      0
0       5 � 

The system X′ = P−1𝐴𝐴PX  follow the form �𝑥𝑥1
′

𝑥𝑥2
′ � = �−3      0

0       5 � �
𝑥𝑥1
𝑥𝑥2
� ⟹ 𝑥𝑥1

′ = −3𝑥𝑥1, 𝑥𝑥2
′ = 5𝑥𝑥2 

The solution of this system of equations is 
𝑥𝑥1 = 𝑐𝑐1𝑒𝑒−3𝑡𝑡and𝑥𝑥2 = 𝑐𝑐2𝑒𝑒5𝑡𝑡  
To return to the original variables 𝑥𝑥1 and 𝑥𝑥2use the substitution  
𝑋𝑋1 = 𝑥𝑥1 + 𝑥𝑥2 =  𝑐𝑐1𝑒𝑒−3𝑡𝑡 + 𝑐𝑐2𝑒𝑒5𝑡𝑡and𝑋𝑋2 = −3𝑥𝑥1 + 𝑥𝑥2 =  −3𝑐𝑐1𝑒𝑒−3𝑡𝑡 + 𝑐𝑐2𝑒𝑒5𝑡𝑡  
If A has eigenvalues with multiplicity greater than 1 or if Ahas complex eigenvalues, then the technique for solving 
the system must be modified. 
(iv)Solution of linear systems of the form 𝐱𝐱(𝐤𝐤+𝟏𝟏) = 𝐀𝐀𝐱𝐱(𝐤𝐤) containing complex roots.  

Let A = �
−3   1   6
1 − 1 − 2
−1 − 1  0

� be the coefficient matrix for three dimensional iterative systemsx(k+1) = Ax(k). 

If the eigenvalues  and corresponding eigenvectors are: 𝜆𝜆1 = −2, 𝜆𝜆2 = −1 + 𝑖𝑖, 𝜆𝜆3 = −1 − 𝑖𝑖 

𝑣𝑣1 = �
4
−2
1
�,  𝑣𝑣2 = �

2 − 𝑖𝑖
−1
1

�, and 𝑣𝑣3 = �
2 + 𝑖𝑖
−1
1

� 

Therefore , according to theorem (1.9) the general complex solution to the iterative differential equations of linear 
systems is  

𝑥𝑥  (𝑘𝑘) = 𝑏𝑏1(−2)𝑘𝑘 �
4
−1
1
� + 𝑏𝑏2(−1 + 𝑖𝑖)𝑘𝑘 �

2 − 𝑖𝑖
−1
1

� + 𝑏𝑏3(−1 − 𝑖𝑖)𝑘𝑘 �
2 + 𝑖𝑖
−1
1

� 

Where 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3are arbitrary complex scalars 
We notce that the solution has real and imaginary parts, so in the case of systems of differential equations, we break 
up any complex solution into its real and imaginary parts , each of which constitutes a real solution. by writing , 

𝜆𝜆2 = −1 + 𝑖𝑖 = √2𝑒𝑒
3𝜋𝜋𝜋𝜋

4   and hence  

(−1 + 𝑖𝑖)𝑘𝑘 �
2 − 𝑖𝑖
−1
1

� = 2𝑘𝑘 2� 𝑒𝑒3𝑘𝑘𝑘𝑘𝑘𝑘
4� = 2𝑘𝑘 2� (cos

3
4
𝑘𝑘𝑘𝑘 + 𝑖𝑖 sin

3
4
𝑘𝑘𝑘𝑘) 

Hence the complex of complex solution 

(−1 + 𝑖𝑖)𝑘𝑘 �
2 − 𝑖𝑖
−1
1

� = 2𝑘𝑘 2⁄

⎝

⎜
⎜
⎛

2cos
3
4
𝑘𝑘𝑘𝑘 + sin

3
4
𝑘𝑘𝑘𝑘

− cos
3
4
𝑘𝑘𝑘𝑘

cos
3
4
𝑘𝑘𝑘𝑘 ⎠

⎟
⎟
⎞

+ 𝑖𝑖2𝑘𝑘 2⁄

⎝

⎜
⎜
⎛

2sin
3
4
𝑘𝑘𝑘𝑘 − cos

3
4
𝑘𝑘𝑘𝑘

− sin
3
4
𝑘𝑘𝑘𝑘

sin
3
4
𝑘𝑘𝑘𝑘 ⎠

⎟
⎟
⎞

 

Which is indicating that, the solution is a combination of two real solutions? Also the complex conjugate eigenvalue   
𝜆𝜆3 = −1 − 𝑖𝑖leads to complex conjugate solution, The general real solution 𝑥𝑥(𝑘𝑘) to the system can be written as a 
linear combination of the three independent real solutions 

𝑥𝑥(𝑘𝑘) = 𝑐𝑐1(−2)𝑘𝑘 �
4
−1
1
� + 𝑐𝑐22𝑘𝑘 2⁄

⎝

⎜
⎜
⎛

2cos
3
4
𝑘𝑘𝑘𝑘 + sin

3
4
𝑘𝑘𝑘𝑘

− cos
3
4
𝑘𝑘𝑘𝑘

cos
3
4
𝑘𝑘𝑘𝑘 ⎠

⎟
⎟
⎞

+ 𝑐𝑐32𝑘𝑘 2⁄

⎝

⎜
⎜
⎛

2sin
3
4
𝑘𝑘𝑘𝑘 − cos

3
4
𝑘𝑘𝑘𝑘

− sin
3
4
𝑘𝑘𝑘𝑘

sin
3
4
𝑘𝑘𝑘𝑘 ⎠

⎟
⎟
⎞

 

Where 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3 are arbitrary real scalars and 𝑥𝑥(𝑘𝑘) is the solutions of  x(k+1) = Ax(k). 
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3.2 Space of Solutions of inhomogeneous systems 
Consider the inhomogeneous linear ODE 
𝑥𝑥′ = 𝐴𝐴(𝑡𝑡)𝑥𝑥 + 𝐵𝐵(𝑡𝑡)   (3.3) 
Where A(t): I → ℝn×n, B(t): I → ℝnare continuous mapping on open interval I⊂ ℛ 
Theorem (3.2):If 𝑥𝑥0(𝑡𝑡) is a particular solution of equation (3.3) and 𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡), … … … 𝑥𝑥𝑛𝑛(𝑡𝑡) is a sequence of 𝑛𝑛 
linearly independent solutions of equations of homogeneous ODE(3.3). Then the general solution of the equation 
(3.3) is given by 
 𝑋𝑋(𝑡𝑡) = 𝑥𝑥0(𝑡𝑡) + 𝑐𝑐1𝑥𝑥1(𝑡𝑡) + 𝑐𝑐2𝑥𝑥2(𝑡𝑡) + ⋯𝑐𝑐𝑛𝑛𝑥𝑥𝑛𝑛(𝑡𝑡)  (3.4) 
Proof: If 𝑥𝑥(𝑡𝑡) is also a solution of equation(3.3), then the function 𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)  −  𝑥𝑥0(𝑡𝑡) solves 𝑦𝑦′(𝑡𝑡) = 𝐴𝐴(𝑡𝑡) 𝑦𝑦 
Hence by the above theorem 
𝑦𝑦 = 𝑐𝑐1𝑥𝑥1(𝑡𝑡) + 𝑐𝑐2𝑥𝑥2(𝑡𝑡) + ⋯𝑐𝑐𝑛𝑛𝑥𝑥𝑛𝑛(𝑡𝑡) (3.5) 
Then X(t) satisfies (2-2). Conversely, for all   𝑐𝑐1, 𝑐𝑐2 … … … … … … 𝑐𝑐𝑛𝑛 , the function (2-3) solves 𝑦𝑦′(𝑡𝑡) = 𝐴𝐴(𝑡𝑡) 𝑦𝑦 
whence its follow that the function 𝑋𝑋(𝑡𝑡) = 𝑥𝑥0(𝑡𝑡) +  𝑦𝑦(𝑡𝑡)   solves  (3.3). 
Theorem(3.3): The general solution to the system  
𝑥𝑥′ = 𝐴𝐴(𝑡𝑡)𝑥𝑥 + 𝐵𝐵(𝑡𝑡)    (i)  
is given by𝑥𝑥 = 𝑋𝑋(𝑡𝑡)𝑥𝑥 ∫𝑋𝑋−1(𝑡𝑡)𝐵𝐵(𝑡𝑡)𝑑𝑑𝑑𝑑   (ii) 
Where 𝑋𝑋 is the fundamental matrix of the system𝑥𝑥′ = 𝐴𝐴(𝑡𝑡)𝑥𝑥 
Such that ∫𝑋𝑋−1(𝑡𝑡)𝐵𝐵(𝑡𝑡) is a time dependent 𝑛𝑛 −dimensional vector, which can be integrated in 𝑡𝑡 component wise 
Proof: let the matrix X satisfies the following ODE 𝑋𝑋′ = AX ,  
By differentiating the equation (ii)  

x′(t) = X′(t)�X−1B(t)dt + X(t)(X−1B(t)) 

=  AX� X−1B(t)dt +  B(t) 

= 𝐴𝐴𝐴𝐴 + 𝐵𝐵(𝑡𝑡) 
Hence 𝑥𝑥(𝑡𝑡) solves equation (i) 
let us show that the equation (ii) gives all the solutions, we have observe the integral in equation (ii) is indefinite so 
that it can be presented in the form  

�X−1B(t)dt = V(t) + C 

Where V(t) is a vector function and 𝐶𝐶 = 𝑐𝑐1 , 𝑐𝑐2 … … . . 𝑐𝑐𝑛𝑛  is an arbitrary constant vectors 
Therefore equation (i) gives  

𝑥𝑥(𝑡𝑡) = 𝑋𝑋(𝑡𝑡)𝑉𝑉(𝑡𝑡) + 𝑋𝑋(𝑡𝑡)𝐶𝐶 = 𝑥𝑥0(𝑡𝑡) + 𝑐𝑐1 𝑥𝑥1 (𝑡𝑡) + 𝑐𝑐2 𝑥𝑥2 (𝑡𝑡) + ⋯𝑐𝑐𝑛𝑛  𝑥𝑥𝑛𝑛  (𝑡𝑡) 
Where 𝑥𝑥0(𝑡𝑡) = 𝑋𝑋(𝑡𝑡)𝑉𝑉(𝑡𝑡) is a solution of equation (ii) 
Hence 𝑥𝑥(𝑡𝑡) is the general solution of the system 
Proposition(3.1): 
The set 𝑆𝑆 of solutions to systemy′ =  Ay, such thatA =  [𝑎𝑎𝑖𝑖𝑖𝑖 ]𝑛𝑛 × 𝑛𝑛 ∈  M𝑛𝑛:with the initial condition 
y(t0)  =  y0  ∈  𝑅𝑅𝑛𝑛 is a vector space. 
Proof: Lety1andy2belong to 𝑆𝑆, the set of solutions to (i). This set is nonempty since 0𝜖𝜖𝜖𝜖. For 
any constants  𝛼𝛼1,𝛼𝛼2𝜖𝜖𝜖𝜖 considering 𝑦𝑦 = 𝛼𝛼1y1 + 𝛼𝛼2y2We need to show that 𝑦𝑦 ∈  𝑆𝑆.  This follows from 
the fact that (𝛼𝛼1y1 + 𝛼𝛼2y2)′ = 𝐴𝐴(𝛼𝛼1y1 + 𝛼𝛼2y2) ⇔ 𝛼𝛼1y1

′ + 𝛼𝛼2𝑦𝑦2
′ = 𝐴𝐴𝛼𝛼1y1 + 𝐴𝐴𝛼𝛼2y2 

from vector space axioms  
Proposition (3.2). 
If 𝜆𝜆1,𝜆𝜆2, … … … … . 𝜆𝜆𝑛𝑛  are distinct eigenvalues of 𝐴𝐴𝐴𝐴𝑀𝑀𝑛𝑛  with the corresponding eigenvectors 
𝑣𝑣1,𝑣𝑣2, … … … . 𝑣𝑣𝑚𝑚 then{𝑣𝑣1,𝑣𝑣2, … … … . 𝑣𝑣𝑚𝑚 } is is linearly independent set. 
Proof.Let me prove this proposition by induction. Check this for 𝑚𝑚 =  1. 𝑣𝑣1is linearly independent 
because it is by definition non-zero. Now assume it is true for m = j, i.e., we assume that any set of j 
eigenvectors corresponding to distinct eigenvalues is linearly independent. Now I would like to prove that 
it is also true for j + 1 eigenvectors. Consider the linear combination 

𝛼𝛼1𝑣𝑣1 + 𝛼𝛼2𝑣𝑣2 + ⋯𝛼𝛼𝑗𝑗𝑣𝑣𝑗𝑗 + 𝛼𝛼𝑗𝑗+1𝑣𝑣𝑗𝑗+1 = 0 
Multiply both sides of it by 𝐴𝐴 from the left and use the fact that 𝑣𝑣1are eigenvectors: 

𝛼𝛼1𝜆𝜆1𝑣𝑣1 + 𝛼𝛼2𝜆𝜆2𝑣𝑣2 + ⋯𝛼𝛼𝑗𝑗𝜆𝜆𝑗𝑗𝑣𝑣𝑗𝑗 + 𝛼𝛼𝑗𝑗+1𝜆𝜆𝑗𝑗+1𝑣𝑣𝑗𝑗+1 = 0 
Now multiply the first equality by _1 and subtract from the second one: 
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𝛼𝛼2(𝜆𝜆2 − 𝜆𝜆1)𝑣𝑣2 +⋯+ 𝛼𝛼𝑗𝑗+1�𝜆𝜆𝑗𝑗+1 − 𝜆𝜆1�𝑣𝑣𝑗𝑗+1 = 0 
Which a linear combination of 𝑗𝑗 eigenvectors, which form linearly independent set by assumptions. This means that 
𝛼𝛼𝑖𝑖(𝜆𝜆𝑖𝑖 − 𝜆𝜆1) = 0, 𝑖𝑖 =  2, . . . . . . . . . . . . . . 𝑗𝑗 + 1  
and since all 𝜆𝜆 are distinct 
𝛼𝛼𝑖𝑖 = 0,  𝑖𝑖 =  2, . . . . . . . . . . . . . . 𝑗𝑗 + 1  
This leaves us with 

𝛼𝛼1𝑣𝑣1 = 0 ⇒ 𝛼𝛼1 = 0 
Thus {𝑣𝑣1,𝑣𝑣2, … … … . 𝑣𝑣𝑚𝑚 }, is independent  
Theorem (3.4):Given a system 𝑥𝑥′ = 𝐴𝐴𝐴𝐴 where A is a real matrix. If  𝑥𝑥 =  𝑥𝑥1 + 𝑖𝑖𝑥𝑥2 is a complex solution, then its 
real and imaginary parts 𝑥𝑥1, 𝑥𝑥2are also solutions to the system. 
Proof: since 𝑥𝑥1 + 𝑖𝑖𝑥𝑥2 is a solution then we have(𝑥𝑥1 + 𝑖𝑖𝑥𝑥2)′=𝐴𝐴(𝑥𝑥1 + 𝑖𝑖𝑥𝑥2) 
By equating real and imaginary parts of this equation,  𝑥𝑥1

′ = 𝐴𝐴𝑥𝑥1 and 𝑥𝑥2
′ = 𝐴𝐴𝑥𝑥2 

Therefore this shows that 𝑥𝑥1, and 𝑥𝑥2 are solutions of the system 𝑥𝑥′ = 𝐴𝐴𝑥𝑥 
Theorem (3.5): Vector space S of the solutions to system (i) is 𝑛𝑛-dimensional. 
Proof:We will prove this theorem by presenting a basis for 𝑆𝑆 that has exactly 𝑛𝑛 elements. 
Consider n initial value problems for (i), wherey(t0) = ei;  𝑖𝑖 =  1; … … ;  𝑛𝑛; 
and𝑒𝑒𝑖𝑖  are standard unit vectors in 𝑅𝑅𝑛𝑛  (i.e., vectors with one at the 𝑖𝑖 − 𝑡𝑡ℎ position and zeros everywhere 
else). Due to Theorem 1, we have n unique solutions, which I denote as 𝑦𝑦𝑖𝑖(t); 𝑖𝑖 =  1; . . . . . . . . . . ;  𝑛𝑛 
Firstly let {(𝑦𝑦1(𝑡𝑡),𝑦𝑦2(𝑡𝑡), … … 𝑦𝑦𝑛𝑛(𝑡𝑡)} span 𝑆𝑆 indeed, assume that 𝑥𝑥(𝑡𝑡) 𝜖𝜖 𝑆𝑆 is a solution of the system (i) 
along with the initial condition 𝑥𝑥(𝑡𝑡0) = 𝑥𝑥0.  Consider also 𝑦𝑦(𝑡𝑡) = 𝑥𝑥1

0𝑦𝑦1(𝑡𝑡) + ⋯𝑥𝑥𝑛𝑛0𝑦𝑦𝑛𝑛(𝑡𝑡) 
Therefore  𝑦𝑦(𝑡𝑡) is a solution of (i) as a linear combination of solutions, and at the point 𝑡𝑡 0y(𝑡𝑡0)  =  𝑥𝑥(𝑡𝑡0), 
Hence,by Theorem1 ,x(𝑡𝑡)  ≡  y(𝑡𝑡) 
This mean that any solution to (i) , (ii) can be represent as a linear combination of 
{𝑦𝑦1(𝑡𝑡), … … … … . .𝑦𝑦𝑛𝑛(𝑡𝑡)}. 
Secondly, let {𝑦𝑦1(𝑡𝑡), … … … … . .𝑦𝑦𝑛𝑛(𝑡𝑡)}is a linearly independent set. Let 𝛽𝛽1,𝛽𝛽2 … … … . .𝛽𝛽𝑛𝑛 ∈ 𝑅𝑅 such that 

𝛽𝛽1𝑦𝑦1(𝑡𝑡) + 𝛽𝛽2𝑦𝑦2(𝑡𝑡) … … … … …𝛽𝛽𝑛𝑛𝑦𝑦𝑛𝑛(𝑡𝑡) 
For any 𝑡𝑡 (this is the definition of linear independence). Rewrite the last equality as a system in the matrix form: 
Φ(𝑡𝑡)𝛽𝛽 = 0 
Where Φ(t) is the matrix having 𝑦𝑦𝑖𝑖(𝑡𝑡) as its 𝑖𝑖 − 𝑡𝑡ℎ column, and 𝛽𝛽𝑇𝑇 = (𝛽𝛽1,𝛽𝛽2, … … … …𝛽𝛽𝑛𝑛) 
Since the last equality has to be true for any 𝑡𝑡 then it is true for 𝑡𝑡0, but for 𝑡𝑡0 = 𝑡𝑡 and Φ(𝑡𝑡0) = 𝐼𝐼and the 
only solution to𝐼𝐼𝐼𝐼 = 0,  
is a trivial one, 𝛽𝛽𝑇𝑇 = (0,0, … … … … 0), Therefore, {𝑦𝑦1(𝑡𝑡), … … … … . .𝑦𝑦𝑛𝑛(𝑡𝑡)}is a linearly independent set. 
Since{𝑦𝑦1(𝑡𝑡), … … … … . .𝑦𝑦𝑛𝑛(𝑡𝑡)} span 𝑆𝑆 and is linearly independent, then it is a basis for 𝑆𝑆. 
3.2.1 The Implementation of The Method In Solving Inhomogeneous Linear ODEs Systems.  
(i) First order linear differential systems. 
Consider the first order of linear differential equations  

𝑥𝑥1
′ = −𝑥𝑥2 , 𝑥𝑥2

′ = 𝑥𝑥1 
Find the solution of the systems above. 
Solution: 
We can reform the linear system as 𝑥𝑥′ = �0  − 1

1        0� 𝑥𝑥 so the system has two independent solutions, such that  

𝑥𝑥1(𝑡𝑡) = �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�and𝑥𝑥2(𝑡𝑡) = �−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � 
Then the corresponding fundamental matrix is  
X = � cost         − sint

sint                cost�and𝑋𝑋−1 = � cost     sint
−sint    cost   � 

Consider the ODE 𝑥𝑥′ = 𝐴𝐴(𝑡𝑡)𝑥𝑥 + 𝐵𝐵(𝑡𝑡) , where  𝐵𝐵(𝑡𝑡) = �𝑏𝑏1(𝑡𝑡)
𝑏𝑏2(𝑡𝑡)�, so by equation (1) we get the general solution as  

𝑥𝑥(𝑡𝑡) = � cost         − sint
sint                cost��� cost     sint

−sint     cost   � �
𝑏𝑏1(𝑡𝑡)
𝑏𝑏2(𝑡𝑡)� 𝑑𝑑𝑑𝑑 = � cost         − sint

sint                cost��� 𝑏𝑏1(𝑡𝑡)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑏𝑏2(𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
−𝑏𝑏1(𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑏𝑏2(𝑡𝑡)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� 𝑑𝑑𝑑𝑑  

Let a particular example (𝑡𝑡) = � 1
−1� , then the integral is 

�� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐     − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠    − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� 𝑑𝑑𝑑𝑑 = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐶𝐶1

−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐶𝐶2
� 
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Whence 𝑥𝑥(𝑡𝑡) = � cost         − sint
sint                cost� �

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐶𝐶1
−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐶𝐶2

� = �𝐶𝐶1cost − 𝐶𝐶2sint
𝐶𝐶1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐶𝐶2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

� 

𝑥𝑥(𝑡𝑡) = �𝑡𝑡0� + 𝐶𝐶1 �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� + 𝐶𝐶2 �

−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � 

A scalar ODE of n-th order 
3.3 Solution of Inhomogeneous Linear Differential Equations Systems of Order 𝒏𝒏 
𝑥𝑥(𝑛𝑛) + 𝑎𝑎1(𝑡𝑡)𝑥𝑥(𝑛𝑛−1) + ⋯𝑎𝑎𝑛𝑛(𝑡𝑡)𝑥𝑥 = 𝑓𝑓(𝑡𝑡)(3.6) 
Where 𝑎𝑎𝑘𝑘(𝑡𝑡) and 𝑓𝑓(𝑡𝑡) are continuous function on some interval I. it can be reduce to the vector ODE as 

𝑥𝑥′ = 𝐴𝐴(𝑡𝑡)𝑥𝑥 + 𝐵𝐵(𝑡𝑡) 
 

𝑋𝑋(𝑡𝑡) = �

𝑥𝑥(𝑡𝑡)
𝑥𝑥′(𝑡𝑡)

.
. 𝑥𝑥(𝑛𝑛−1)(𝑡𝑡)

�, 𝐴𝐴 =

⎝

⎜
⎛

0  1  0  0. . … … .0
0  0  1 … … . . … .0
… … … … … … . .

0   0    0  … … . . .1
−𝑎𝑎𝑛𝑛  − 𝑎𝑎𝑛𝑛−1 − 𝑎𝑎1⎠

⎟
⎞

 and B =

⎝

⎜
⎛

0
0
.
.
f⎠

⎟
⎞

      (3.7) 

If 𝑥𝑥1.............𝑥𝑥2 are𝑛𝑛 linearly independent solutions to the homogeneous ODE 
𝑥𝑥(𝑛𝑛) + 𝑎𝑎1(𝑡𝑡)𝑥𝑥(𝑛𝑛−1) + ⋯𝑎𝑎𝑛𝑛(𝑡𝑡)𝑥𝑥 = 0 

Then denoting by 𝑥𝑥1.............𝑥𝑥2the corresponding vector solution, we obtain the fundamentalmatrix 

𝑋𝑋 =  (𝑥𝑥1|𝑥𝑥2| … … . . |𝑥𝑥𝑛𝑛) = �

𝑥𝑥1𝑥𝑥2 … … . . 𝑥𝑥𝑛𝑛
𝑥𝑥1  
′ 𝑥𝑥2  

′ … . . … 𝑥𝑥𝑛𝑛   
′

… … . … … … … … . .
𝑥𝑥1  

(𝑛𝑛−1)𝑥𝑥2  
(𝑛𝑛−1)𝑥𝑥𝑛𝑛   

(𝑛𝑛−1)

�                                                                                                (3.8) 

By multiplying 𝑋𝑋−1by B, where 𝑦𝑦𝑖𝑖𝑖𝑖  the element of  𝑋𝑋−1at position 𝑖𝑖, 𝑘𝑘 so that 𝑖𝑖 is the row index and 𝑘𝑘 is the column 
index Denote also by 𝑦𝑦𝑘𝑘  the 𝑘𝑘 − 𝑡𝑡ℎ columnof 𝑋𝑋−1, that is, 

𝑦𝑦𝑘𝑘 = �

𝑦𝑦1𝑘𝑘
.
.

𝑦𝑦𝑛𝑛𝑛𝑛

�, then  𝑋𝑋−1𝐵𝐵 = �
𝑦𝑦11𝑦𝑦12 … … .𝑦𝑦1𝑛𝑛
… … … … … … … .
𝑦𝑦𝑛𝑛1𝑦𝑦𝑛𝑛2 … … … 𝑦𝑦𝑛𝑛𝑛𝑛

��

0
.
.
𝑓𝑓

� = �

𝑦𝑦1𝑛𝑛𝑓𝑓
.
.

𝑦𝑦𝑛𝑛𝑛𝑛 𝑓𝑓

� = 𝑓𝑓𝑦𝑦𝑛𝑛                                                       (3.9) 

and the general vector solution is 
𝑥𝑥 = 𝑋𝑋(𝑡𝑡)∫ 𝑓𝑓(𝑡𝑡)𝑦𝑦𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑     (3.10) 
To find the function x(t)which is the first component of x  by taking the first row of 𝑋𝑋 to multiply by the 
columnvector∫ 𝑓𝑓(𝑡𝑡)𝑦𝑦𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑 , where 
𝑥𝑥 (𝑡𝑡)  = ∑ 𝑥𝑥𝑗𝑗 (𝑡𝑡)∞

𝑗𝑗=0 ∫ 𝑓𝑓(𝑡𝑡)𝑦𝑦𝑗𝑗𝑗𝑗(𝑡𝑡)𝑑𝑑𝑑𝑑                                                                                                               (3.11) 
Corollary:  Let 𝑥𝑥1 … … . . 𝑥𝑥𝑛𝑛  be n linearly independent solution to 𝑥𝑥(𝑛𝑛) + 𝑎𝑎1(𝑡𝑡)𝑥𝑥(𝑛𝑛−1) + ⋯𝑎𝑎𝑛𝑛(𝑡𝑡)𝑥𝑥 = 0 
and X be the corresponding fundamental matrix.Then, for any continuous function 𝑓𝑓 (𝑡𝑡),the general solution to the 
ODE 
𝑥𝑥(𝑛𝑛) + 𝑎𝑎1(𝑡𝑡)𝑥𝑥(𝑛𝑛−1) + ⋯𝑎𝑎𝑛𝑛(𝑡𝑡)𝑥𝑥 = 𝑓𝑓(𝑡𝑡) 
is given by 
𝑥𝑥 (𝑡𝑡)  = ∑ 𝑥𝑥𝑗𝑗 (𝑡𝑡)∞

𝑗𝑗=0 ∫ 𝑓𝑓(𝑡𝑡)𝑦𝑦𝑗𝑗𝑗𝑗(𝑡𝑡)𝑑𝑑𝑑𝑑                                                                                                                 (3.12) 
Where𝑦𝑦𝑗𝑗𝑗𝑗  are the entries of the matrix 𝑋𝑋−1. 
(I) IMPEMENTATION OF THE METHOD 
Solve the inhomogeneous linear differential equation below 
𝑥𝑥′′ = sin(𝑡𝑡) − 𝑥𝑥                                                                                                                                                          (i) 
Solution: 
Rewrite the equation (i) as equation (3.6) 
𝑥𝑥′′ + 𝑥𝑥 = sin(𝑡𝑡)                                                                                                                                                        (ii) 
The independent solutions for homogeneous linear differential equation are 
Hence  𝑥𝑥1(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑥𝑥2(𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
Where 𝑋𝑋 = � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐      𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠        𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� and 𝑋𝑋−1 = �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐     − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠        𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � 

So the particular solution for equation(ii) using the equation (3.12) 

𝑥𝑥 (𝑡𝑡) = �𝑥𝑥𝑗𝑗 (𝑡𝑡)
∞

𝑗𝑗=0

�𝑓𝑓(𝑡𝑡)𝑦𝑦𝑗𝑗𝑗𝑗(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝑥𝑥1(𝑡𝑡)�𝑓𝑓(𝑡𝑡)𝑦𝑦12(𝑡𝑡)𝑑𝑑𝑑𝑑+𝑥𝑥2(𝑡𝑡)�𝑓𝑓(𝑡𝑡)𝑦𝑦22(𝑡𝑡)𝑑𝑑𝑑𝑑 
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𝑥𝑥 (𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑑𝑑𝑑𝑑 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑑𝑑𝑑𝑑 

= −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � 𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡𝑡𝑡𝑡𝑡 +
1
2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(2𝑡𝑡)𝑑𝑑𝑑𝑑 

= −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
1
2
𝑡𝑡 −

1
4
𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑐𝑐1� +

1
4

sint⁡(−𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 + 𝑐𝑐2) 

= −
1
2
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 +

1
4

(𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡) + 𝑐𝑐3𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐4𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

= −
1
2
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑐𝑐3𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐5𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

Therefore 𝑥𝑥 (𝑡𝑡) is the solution of system of linear differential equations 
4. Discussion: 
The study introduced the solution of linear differential equations systems in homogeneous and inhomogeneous form 
using coefficient matrices techniques which by generating eigevalues, eigenvectors of the matrices. Its powerful 
method,and gives typical results comparing with other analytical techniques. The major drawback of this method, is 
extracting the inverse of coefficients matrices, the process is so tedious and sophisticate to generate for higher order 
matrices.  
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