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THE DOUBLE LAPLACE-ABOODH TRANSFORM AND THEIR
PROPERTIES WITH APPLICATIONS

MONA HUNAIBER!, ALI AL-AATT?

ABSTRACT. In this paper, we present a new operator integral transform called
double Laplace-Aboodh transform, some valuable properties for the transform
are current. Furthermore, we use this transform for solving some linear partial
differential equations.

1. INTRODUCTION

The source of the integral transforms can be traced back to the work of Laplace
in 1780s and Fourier in 1822 [12]. Laplace transform is highly competent for solv-
ing some class of ordinary and partial differential equations. The integral and
differential equations have been solved using many integral transforms. Aboodh
transform was introduced by Khalid Aboodh to facilitate the process of solving
ordinary and partial differential equations in the time domain [1]. Integral trans-
forms have become an important working tool of all applied engineers and scien-
tist. The Aboodh tramsform is a new integral transform similar to the Laplace
transform and other integral transforms that are defined in the time domain.
The solutions of initial and boundary value problems are given by numerous in-
tegral transforms methods. In previous years, numerous notice has been given
to deal with the double integral transform, for instance, see [3, 4, &, 9], and so
on which have many applications in various fields of mathematical sciences and
engineering such as acoustics, physics, chemistry, etc.,. Many researchers have
turned their attention to solve partial differential equation and to develop new
methods for solving such equations. Due to the rapid development in the physi-
cal science and engineering models [2]. We applied new double Laplace-Aboodh
transform to solve Laplace, Poisson, Wave and Heat equations. The main ob-
jective of this paper is to present a new method for solving some linear partial
differential equations subject to the initial and boundary conditions called double
Laplace-Aboodh transform.

1.1. Definition. The Laplace transform of the continuous function f(x) is de-
fined by

L16(0)] = /0 e H(C)AC = B(p). (L1)

where L is the Laplace operator. Provided that the integral exists. If the integral
is convergent for some value of p, then the Laplace transformation of ¢({) exists
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otherwise not [14].

The inverse Laplace transform is defined by
B 1 a-+100
L =00) = 5 [ i) (12)

270 J —ioo

where « is a real constant.

1.2. Definition. Let ¢(7) be an exponential order function in the set

H= {gf)(r) 3B, g, 0 > 0, |p(7)| < Bel™i, for 7€ (=1)" x [0,00), i = 1,2}.

where B is a finite number and «a;, a, may finite or infinite [13]. Then the Aboodh
transform of the function ¢(7) is given by
1 oo
Aiplr)] =2 = [ e ordr, an < < (1.3)
0

where A is called the Aboodh transform operator.
The inverse Aboodh transform is given by
1 B+ico
AP = o(7) = — AN B(N)dN; B> 0. (1.4)
27'('2 B—ico
where [ is a real constant.
In the next definition, we introduce the double Laplace-Aboodh transform.

1.3. Definition. The double Laplace- Aboodh transform of the function ¢ of two
variables ¢, 7 > 0 is denoted by L¢A-[¢ = ®(p, \) and defined by

LANCET) 2 / / o006, ricdr, (15)

provided the integral exists.

1.4. Definition. The inverse double Laplace-Aboodh transform of the function
¢(¢, 1) is defined by

a+ico B+ico
O(¢, 1) = LA ®(p, V)] = ﬁ/ €p<</4 AN D(p, )\)d)\)dp, (1.6)

where « and [ are real constants.

2. EXISTENCE AND UNIQUENESS OF THE DOUBLE LAPLACE-ABOODH
TRANSFORM

2.1. Definition. [3] A function ¢((, 7) is said to be of exponential orders «, § >
0,on 0 < (,7 < o0, if there exists positive constants K, X and Y such that

6(C,7)] < Kel®t7 forall ( > X, 7>,

and we write
(¢, 1) = 0(e*P) as ¢, 7 — 0.
Or, equivalently,

lim e WG T <K lim e P AT =0 p>a, A > B

{—00,7—00 ({—00,7—00
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2.2. Theorem. [3] Let ¢((,7) be a continuous function in every finite intervals
(0, X) and (0,Y) and of exponential order e(®*57) then the double Laplace-
Aboodh transform of ¢((, 7) exists for all p > a and A > f.

Proof. Let ¢(C, ) be of exponential order e(®¢*+57) such that

‘(p(m)‘g Kel$HD forall ¢ > X, 7> Y,

Then, we have

w0 = |5 [ [ et g

T[T lg mlagar
0

/OO /OO e_(”C*/\T)e(O‘CJ“BT)dCdT
o Jo

/OO e*(ﬂ*a)CdC > e~ (=BT 1
0 0

K
(p—a)(X = pA)

VA
> =
o\,

M= =

Thus, the proof is complete.

2.3. Theorem. Let ®;(p,\) and ®;(p, \) be the double Laplace-Aboodh trans-
form of the continuous functions ¢1(¢, 7) and ¢-((, 7) defined for ¢, 7 > 0 respec-

tivelY' If q)l(p7 /\) = q)Q(p? /\)7 then ¢1(§a T) — ¢2(C> T)‘
Proof. Assume that w; and w, are adequately large, since

L 1 a+ico " B+ioco -
$(C,7) = LTVAT [B(p, ) :W/a_m e (/ﬁ_m e (I)(p,A)dA)dp,
we deduce that
1 a+ioo B+ico
¢1(¢,7) = / ePC( / )\e’\TQ)l(p,)\)d)\)dp
o 8

(27Ti)2 —100 —1400
1 a+ioco B+ioco \
- /a N o /6 A, A)dA)dp

- ¢2(C7 7—)‘

This proves the uniqueness of the double Laplace-Aboodh transform.

3. SOME USEFUL PROPERTIES OF LAPLACE-ABOODH TRANSFORM

3.1. Linearity property. If the double Laplace-Aboodh transform of functions
¢1(¢, 7) and ¢o(C, 7) are D1(p, A) and P(p, A) respectively, then double Laplace-
Aboodh transform of ag (¢, 7)+Bp2((, 7) is given by a®q(p, \)+LPa(p, A), where

a and [ are arbitrary constants.
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Proof.
Leddfadn(Cr) 4 ponlc, )] = [ [T e (agu(e,m) + Boalé.m))dcar

= / / ~P g (¢, T)dCdT
+ B / / ~EAT o (¢, T)dCdr

= A) + BPa(p, A) (3.1)
3.2. Change of scale property. Let gb(( ,T) be a function such that
LAD(C )] = D(p, A).-

Then for o and  are positive constants, we have
1

LeArdélac, 7)) = —a (L,

5225 (3.2)

A
B
Proof.

LA [p(ag, BT)] / / ~CHA b, Br)dCdr.

Let u = a(, v = g7, then

LA [d(u,v)] = aﬁ)\/ / ~(Guts 3 é(w, v)dudv

i
A
3.3. Shifting property. If LA [¢(C,7)] = P(p, A), then for any pair of real
constants «, 8 > 0
LA G0 1)) = @(p — o, A = ). (3.3)
Proof. Using the definition of double Laplace-Aboodh transform, we get
LA = [T [ et g g
- / | e oo yacar
= —a, A — ).
3.4. Derivatives properties. If L'(AT[¢(C, 7)] = ®(p, A), then
9¢(C,
(1), LeA:| (’“;C )= po(p.3) - Alp(0,7)] (3.4)
Proof.
00(¢,7) _ / / p(—Mr)agb ¢,7)
LA 5 | = s e

- )\/0 ATdT(/O e " ge(C, T)dC)
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Using integration by parts, let u = e, dv = ¢¢((, 7)d¢, then we obtain

QAT[%((?CC, T)} - 5 /0 e dr(~9(0.7) +p /0 " e ro(cT)c)
= p®(p,A) = A[p(0, 7)].

(2). £ [T = v, 3) — S206(¢,0)] (3.5)
Proof.
ﬁCATP(ﬁ((?CT, T)] _ / / —(pcar) 99( C, )dgd

= 5] e[ —%(c r)ir).

Using integration by parts, let u = e™*", dv = ¢,(¢, 7)d7, then we obtain

[(AT[8¢(86_’T)} - % /0 ooe—ﬂCdg(—qs(g,oHA /0 Ooe—”gb(g,T)dT)

= AB(p, ) — LD, 0)]

) LA TEUET - oG S0P Sdioc0. 0l 69
Proof.
82¢(C77) —(pG+AT) 82¢ C T)
L‘CAT[ e } - / / S o

= )\/0 ATO”(/O e (¢, T)dC>

Using integration by parts, we obtain

TUD] = [T evar(=oct0m) + p{-e0m) 45 [~ ol mac))
= p*0(p, ) — pA[B(0,7)] — Alp(0,7)].

Similarly, we can prove that:

(5). LA, [azg C(g’:)}

LA

(4). ECAT[

= PAB(p, \) = L LI6(C.0)] = Al (0. 7).

4. CONVOLUTION THEOREM OF DOUBLE LAPLACE-ABOODH TRANSFORM

4.1. Definition. The convolution of the functions ¢(¢, ) and 1({, 7) is denoted
by (¢ * *1)(¢, 7) and defined by

(o *x)(C,T) = /000 /000 O(C—e, 7= 0)(e, d)deds. (4.1)
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4.2. Theorem. [3] If ®(p,\) = L A;[¢(C, 7)], then for constants €, we have
LAD(C —e,7 =) H(( —e,7 =) = e =0 (p, N), (4.2)

where H((,7) is the Heaviside unit step function defined by

|1, (>eT>0,
H(C=er=0)= { 0, otherwis. (4.3)

Proof. Using definition of double Laplace-Aboodh transform, we have
LA —aT=OHC—r=0)] = 5 [ [T 0 - pHC ~ em = dydcar

= 5 / / e P G(¢ — e, 7 — §)d(dr, (4.4)

o Jo

by putting ( —e =4, 7 — d = v, then, we have
LA[DC—e,7—0)H(C —¢e,7—0)] = e etd) / / ~ (PN (9, v)ddd

_ (p€+)\6 ) (45)

4.3. Theorem. Let ®(p,\) and ¥(p, \) be the double Laplace-Aboodh transform
of the functions ¢((, 7) and ¢ ((, 7) respectively, then

Proof. By definition (1.3), we have

LA #0)(Co7)] = / / ) (5 i) (C, 7T

_ / / ﬂwﬂ/ / B¢ — &7 — )u(e, 6)deds hCdr

Using the Heaviside unit step function

_ // e f / / B¢ — &7 = O)H(C — &7 — 6)b(e,0)dedd bCdr
_ / / ¥(e, 6)dedd | // OSNIG(C — e — BH(C — e, 7 — b)dCdr ).

By Theorem (4.2)

= / / U(e, 0)deds e_(p€+’\5)CI>(p,/\)}
— p, / / 7(p5+>\5 8 (5)d5d5

= AP(p, )
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5. THE DOUBLE LAPLACE-ABOODH TRANSFORM OF SOME ELEMENTARY

FUNCTIONS
(1). If the function ¢(¢,7) = 1, then
LA 0 / / e~ WA dedr = (5.1)
(2). If the function ¢(¢,7) = (7, then
1
LeA ¢ / / ~eHN) CrdCdr = e (5.2)
(3). If the function ¢(¢,7) = ¢?72, then
4
LA o / / ~HM 202 qcdr = N (5.3)
(4). If the function ¢(¢,7) = ("1™, n,m =0,1,2, ... , then
Im!
LA / / (AT enemgedr = % (5.4)
(5). If the function ¢(¢,7) = (7%, 0 > —1, v > —1, then
o0 xR 1
LeAD 4 / / ~ee DT Ay, = / e Cd¢ / SCEE
0 0
let z =p( and y= A7
1 > — I 420 1 2 — v
LG = o e (S | i)
— T(o+ 1)(p0+1)r(u+ Dy (5.5)
Where, I'(.) is the Euler gamma function.
(6). If the function ¢(¢,7) = (@87 o, 3=0,1,2, ..., then
1
LA 6 / / ¢~ (IHAT) (aCH5T) g\ = . (56
< Py Y
Similarly,
1 1
LA, i(aC+pT)] / / —(PCHAT) i (aCHBT) 1 dr = : :
AT = X =) 0= B)
(pA —aB) +i(pB + o) (57)
(02 4+ a?) (A + 52) '
Consequently,
pA —ap
LA, = :
Adeos(al + 97 =
pB 4 al

LA [sin(a€ + 7)) = Tt o)+ )
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(7). If the function ¢((,7) = cosh(al + 871), o, =0,1,2, ..., then

LA O, T)] = / / ~ S+ cosh(al 4 Br)dldr
A+ af
plrarseaoy o
(8). If the function ¢(&,n) = sinh(a¢ + 57), o, 8 =0,1,2, ..., then
LA D¢, T)] = / / ~(CHA) sinh (a4 Br)dCdA
- potar (5.9)

(P — a®)(N — 2N
6. APPLICATIONS

In this section, to establish the efficiency of the suggestion method we consider
second- order linear partial differential equations with initial and boundary prob-
lems. Let the second-order nonhomogeneous linear partial differential equation
in two independent variables ((,7) be in the form:

Adec(C,7) + Borr (¢, 7) + Cde(C. ) + Do (C, 7) + E(C,7) = h(C, 7). (¢, 7) € RI(6.1)

with the initial conditions:

$(¢,0) = T1(¢), ¢-(¢,0) = T5(¢), (6.2)
and the boundary conditions:
#(0,7) =T5(1), ¢c(0,7)=Ty(T), (6.3)

where A, B, C, D.and £ are constants and h(C, 7) is the source term.
Using the property of partial derivative of the double Laplace-Aboodh transform
for equation (6.1), single Laplace transform for equation (6.2) and single Aboodh
transform for equation (6.3) and simplifying, we obtain that:
(B4 D)Ti(p) + ETalp) + (Ap + )T (\) + ATi(N) + H(p, \)
(Ap>+ BX2+Cp+ DN+ E)
where H(p, )‘) = ‘CCAT[h(Cv T)]
Lastly, solving this algebraic equation in ®(p, A) and taking the inverse double
Laplace-Aboodh transform on both sides of equation (6.4), yields
B+ )T (p) + 2To(p) + (Ap + C)T5(N) + ATu(N) + H(p, A
(Ap> + BX2+Cp+ DN+ E)
which represent the general formula for the solution of equation (6.1) by double
Laplace-Aboodh transform method.

, (6.4)

Example 6.1. Consider the following boundary Laplace equation
¢CC(€7 T) + ¢TT(C? T) = 07 (§7 T) € Ri? (66)

with the conditions:

{ ¢(¢,0) =sinh¢ =T1(¢),  ¢-(¢,0) =0 =T5((),
»(0,7) =0 = T3(7), ¢c(0,7) = cosT = Ty(T).
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Solution:
Substituting
1 1
T =— T =0, T3(A) =0, Ty(\) = H(p,\)=0
1(p) p2_17 2(p) ) 3( ) ) 4( ) 11 (pa ) )
in (6.5) and simplifying, we get a solution of (6.6)
1 1 1
11 o
o(¢,7) = L A] [p2 e <p2 — + O 1)]7 sinh(cost.  (6.7)
Example 6.2. Consider the following boundary Poisson equation
¢CC(C7 T) + (bTT(CJ T) = 2674+T? (CJ T) € Ria (68)

with the conditions:

{ ¢(C,0) = e~ +cos¢ =Ti(C),  ¢-(C,0) = e +cos¢ = T5((),

6(0,7) = 2¢ = T3(7), ¢c(0,7) = —e” = Ty(7).
Solution:
Substituting
Tl(p) = #12_'_ #? T2(p) = p%—ll—i_ p%a
T3()‘) = A1)’ T4(>‘) D YCEE
_ 2
Hp, N) = s oD

in (6.4) and simplifying, we get

2 2 1 1 1
(A<p+1><x—1> + 3000 et 1 T AR e T A(p’fﬂ))
(2 3
1 P

= - ) 6.9
Mo+ DO -1 AP+ D) (09

Taking the inverse double Laplace-Aboodh transform of equation (6.9), we get a

solution of (6.8)

(p,A) =

L 1 p
o(C,7) = LA [A(Ig—l—l)()\—l)+)\(p2+1)()\_1>

= e T + e cosC. (6.10)

Example 6.3. Consider the following nonhomogeneous Wave equation

Grr(C,7) = dec(C,7) + 67 + 2, (¢, 7) €RE, (6.11)
with the conditions:

{ ¢(C70) :OZTl(C)> ¢T(C70) :SIHC:T2<C),
#(0,7) =13 = Ty(7), Gc(0,7) = 72 + sinT = Ty(7).

Solution:
Substituting
Tl(ﬁ) - 07 T2(p) — p21+17
T3()‘) - %7 T4()‘) )\l + )\()\21+1)7
H(p,\) = pgs + p22>\2,
GSJ© 2022
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in (6.4) and simplifying, we get
1 6p 2 1 1 2 6
s e Y
s VA G Ul VI VS ey s Rl v p g s Rl VAR
_ 62 1
= et TN

Taking the inverse double Laplace-Aboodh transform of equation (6.12), we get
a solution of (6.11)

(6.12)

6 2 1
_ -1yl
G 7) LA PA® * pEA * AN2 4+ 1)(p? + 1)]
= 7+ (r* +sin(sinT. (6.13)

Example 6.4. Consider the following nonhomogeneous Heat equation

G- (¢ 7) = e, ) — d(C, 7) + 1, (¢, 7) € RE, (6.14)
with the conditions:

{ ¢(¢,0) =1+sin¢ =T1(¢),  ¢-(¢,0) = =2sin¢ = T5((),

»(0,7) =1 =T3(7), Gc(0,7) = e = Ty(7).
Solution:
Substituting
Tl(P) — /l) + p2{|-1’ TZ(p) = p2__ﬁ17
T5(\) = 5, i) = soa
H(p,\) = 55z,

in (6.4) and simplifying, we get a solution of (6.14)

g Y qp 11 11
o(¢T) = LA [p2_)\_1<)\2+/\()\+2) pPA - A(p?+ 1) W\Qﬂ

_ gt L 1
= LoA [pxz +/\(,02—|—1)()\+2)]
= 1+e ¥ sind. (6.15)

conclusion

In conclusion, double Laplace-Aboodh transform is an influential transform among
all the integral transforms of exponential sort kernels, the double Laplace-Aboodh
transform method for solving partial differential equations is studied. We showed
the popular properties and theorems for double Laplace-Aboodh transform and
equipped some examples.
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