GSJ: Volume 13, Issue 11, November 2025
ISSN 2320-9186

Global Scientific JOURNALS

GSJ: Volume 13, Issue 11, November 2025, Online: ISSN 2320-9186 www.globalscientificjournal.com

In the beginning, God created the heavens and the earth.

He is the One who created the heavens & the earth in truth, and when He says, "Be," it is.

Dr Salib Gad

Creational Code System & Complete Synchronization Revealed "r₀ ≠ 0"

Mathematical Evidence for the Genesis Creation Event When Science aligns with the Scripture

Glory to the Lord God the Sovereign Almighty

G1.01

November 2025, Version 01

Manuscript Book:

"The Creational Code System & Complete Synchronization"

Author's Preface:

A Methodological Challenge to Conventional Geochronology

For 120 years, radiometric dating has operated under a foundational assumption: that daughter isotope concentrations at the time of rock formation were zero or negligibly small ($r_0 \approx 0$). This assumption, introduced by Rutherford in 1906, has never been independently verified and is not mandated by physical law. Yet it underpins every radiometric age published in geological literature for over a century.

This book presents a systematic test of an alternative hypothesis: that initial daughter isotope ratios (r_0) were non-zero and represented **designed initial conditions** necessary for chemical and physical stability at the moment of creation.

The Core Methodological Innovation:

We develop a corrected equation:

 $r_0 = R_{meas} - (\lambda \times T')$

Where:

- r_0 = initial ratio/concentration (must be > 0 for physical plausibility)
- R_meas = currently measured ratio/concentration
- $\lambda = \frac{\text{decay}}{\text{change constant}}$
- T' = elapsed time

This equation allows us to test which timeframe produces physically plausible r_0 values across some independent systems.

The Empirical Test:

We apply this framework systematically to 15 independent systems spanning 13 for measurement and 2 for validation :

- Nuclear physics (12 isotopic decay systems)
- Paleontology (fossil biomolecule preservation)

- Recent Volcanic Rocks (Formed by Volcano's Eruption-known Age)
- Old/Ancient Trees of known Age

The Results:

- 1. Falsification of long timescales: Assuming T' = billions of years produces $r_0 < 0$ (mathematically impossible) across multiple systems
- 2. Convergence to short timescales: All 15 systems achieve $r_0\% \approx 99.9$ 100% accuracy at timescales between 1 day and $\approx 10,000$ years
- 3. Statistical significance: The probability of 15 independent systems randomly converging to the same narrow timeframe is $P \le 10^{-8}$
- 4. Alignment with Genesis chronology: Physical systems converge to Day 1, biological systems to Day 6 of Creation Week.

Critical Acknowledgments:

We fully acknowledge that:

- Modern isochron methods DO account for non-zero initial ratios (this is not our discovery)
- Meteorite and lunar sample isochrons represent strong evidence for deep time and require further research under our framework
- Our conclusions challenge consensus and bear burden of extraordinary proof
- Statistical convergence does not constitute definitive proof (alternative explanations possible)

What This Book Offers:

- ✓ A testable alternative to conventional geochronology
- ✓ Systematic analysis across multiple independent domains
- ✓ Transparent methodology allowing independent replication
- ✓ Honest engagement with strongest counter-evidence
- ✓ Invitation to scientific dialogue rather than dogmatic assertion

What This Book Does not Claim:

- **X** That all problems are solved
- **X** That mainstream scientists are dishonest
- X That theology determines science (we follow here mathematics wherever it leads)

The Central Question:

If non-zero initial conditions (r_0) are properly incorporated into age calculations, do the data support billions of years or thousands of years? We present the mathematics. We invite you to examine the evidence. And we call for rigorous peer engagement with the methodology, not dismissal based on paradigm preference.

Let the equations speak.

In order to explain the above scientifically and methodically, we will begin our short journey in this research with the following chapters:

Chapter 1: Introduction and Scope

Chapter 2: The Challenge of the 12 Systems (The Crystalline Code)

Chapter 3: Using Old Trees of Known Age

Chapter 4: The Challenge of the Animal Code

Chapter 5: Using Recent Volcanic Rocks of Known Age

Chapter 6: The Grand Conclusion

Chapter 7: Response to Expected Criticism

Chapter 8: Author's Final Words & Message to Scientific Community

Acknowledgment

References

Chapter 1: Introduction and Scope

1.1 The Time Problem: The Contradiction in Geological Ages [5-8]

The concept of Time remains the fundamental source of friction between the conventional scientific view of nature and ancient historical accounts. Modern geology and radiometric dating posit a universe spanning billions of years, a timeline sufficient for slow evolution, gradual accumulation, and slow thermal cooling. Conversely, ancient texts, particularly the creation narratives, establish a short, definite timeframe for the Earth's beginning.

This severe contradiction poses a methodological challenge: Can the precise laws of mathematics and physics align with a short, synchronized timeframe? This book uses the common language of both perspectives—quantitative mathematics—to answer this question.

1.2 Introducing the Complete Synchronization

(CP-SC) Chemical-Physical Synchronization Hypothesis

To resolve this conflict, we propose the Complete Synchronization (CP-SC) Hypothesis. This posits that Earth and its surrounding cosmic systems were not subject to slow growth but were created in a state of functional perfection at the precise time began.

The rocks, minerals, elements ... etc, position of the earth were established with their specific compositions instantaneously. Every system, therefore, must contain a primordial code that accounts for its current state.

This hypothesis is testable: if true, all systems should mathematically converge to a single creation moment when properly analyzed.

1.3 The Creational Code (r0):

The New Methodological Concept - <u>before the Developed Equation</u>

We define **r0** as the **integrated initial value** of any given system at the moment creation started. This value is not zero; it is the starting quantity required to reach the current measured value (Cmeas) after an elapsed time (T').

The Adapted Methodological Equation:

$$r0 = Cmeas - (Rate \times T')$$

Our central test is r0 accuracy: Does it approach 100% (absolute perfection) at T'=1 day for all the 12 crystalline systems together (selected in this book)? Critically, does the long-age assumption (4.5×10^9) years) cause a mathematical failure [9-12] (r0 < 0)?

1.4 Scope of the Research

This research rigorously tests 15 essential systems covering the full spectrum of: physical states (12 systems as mentioned); **and** other (2 validation systems of Known Age); and animal system (e.g. from Dinosaur Fossils) for life-states.

The main goal is to prove these 12 (related to nature physical states) systems share a single, synchronized starting point at day 1, while the other 2 systems (related to Know Ages) to validate the equation and the concept and the animals code system shares another single point at week 1.

1.5 The Mathematical Foundation of the Creational Code system

1.5.1 The Unified Core Equation and Physical Imperative

The equation must yield a physically meaningful result.

Adapted r0 Equation

 $r0 = Cmeas - (Rate \times T')$

r0 Physical Imperative : r0 must be > 0.

A -ve value (r0 \leq 0) is physically impossible.

Mathematical Failure (r0 < 0):

If the amount (Rate \times T') exceeds the currently measured amount (Cmeas), the system mathematically proves the elapsed time (T') cannot be correct. This is the irrefutable evidence against the long-age model. For e.g. for the 12 crystalline system, If T ' = 4.5 billion years, the calculated rate would

require $r_0 \le 0$ (a negative initial figures), which is physically absurd. This mathematical impossibility proves the assumed timeframe is incorrect. The only mathematically valid solution places $r_0 \ge 0$ (e.g. at T ' ≈ 1 day).

1.5.2 The Significance of Absolute Perfection (100%)

Absolute perfection ($r0\approx100\%$) at T'=1 day proves that the amount of change over that time is negligible. This confirms that the current state (Cmeas) is practically the created state (r0), validating the Complete Synchronization hypothesis.

1.5.3 The Numerical and Textual Correlation

The perfect mathematical synchronicity found at the reference time of T'= 1 day fundamentally aligns with the Genesis 1:1 textual reference, which denotes the singular, absolute starting point of all creation on the First Day.

1.5.4 Using Developed Mathematical Model for r0

In this book we introduce a developed mathematical model for verifying isotopic consistency, known as **Chemical-Physical Synchronization CP-SC** The objective is to isolate the primordial "Crystalline Code" r0, an initial non-zero value for the Daughter/Parent ratio D/P, which must be unique, constant, and positive for every rock/element at the moment of creation to ensure its physical stability.

Using the conventional dating formula as a working tool, the model was applied first to 12 major isotopic systems either slow-decaying or fast-decaying) [4]. The results demonstrate that complete mathematical and physical synchronization of all 12 systems only occurs within a narrow time range mostly starting from $\approx 100,000$ years till be reaching to 1 day.

This establishes an absolute upper limit on the Earth's age [5-8] and proves that the absolute perfection of r0's accuracy approx 100% is achieved exclusively within 1 day range.

We conclude with a new universal principle: the isotopic creation of all elements and rocks occurred simultaneously over a period not exceeding 1 day, rendering every system mathematically, physically, and chemically complete. Traditional radiometric dating models rely on classical assumptions, primarily that the initial concentration of daughter isotopes

D/P or r0 was zero. This book posits the theory of the existence of a non-zero Crystalline Code r0 at creation. r0 represents a fundamental design requirement, the initial Daughter/Parent ratio D/P necessary for maximum chemical and physical stability. The new consistency verification model, Chemical-Physical Synchronization {CP-SC} , aims to determine the elapsed time (T ') at which r0 achieves the highest accuracy and synchronization across a comprehensive set of rocks.

1.5.5. Methodology and the Derived the New Developed Equation

Using the Conventional Equation as a Working Tool to develop a new targeted Equation to include the Missing Factor r0.

We utilize the **conventional decay equation** [4],[15,16] as a primary tool to isolate the missing factor $\{r0\}$. The previous formula was:

$$\ln \ 1 + \frac{D}{P} \ \frac{1}{\lambda} = t$$

Where:

D: Current Daughter Isotope Concentration

P: Current Parent Isotope Concentration

λ: Decay Constant

t: Hypothesized timeIn: Natural Logarithm

While the **new developed equation** that includes the missing factor is:

In
$$(1+(R_{meas}-r0))$$
 $\frac{1}{\lambda} = T'$

Where:

 R_{meas} Total Ratio of Current Daughter Isotope/Parent Isotope

λ Decay Constant

T' Corrected Time

In Natural Logarithm (NL)

Created ratio in the time of synchronized creation to ensure the crystalline stability (should be > 0) called also the crystalline code [1] or the integrated initial value of any given system at the moment creation started.

1.5.6. Measuring the Accuracy of the r0 (r0%):

It's worth mentioning here as a core concept and principle to measure the r0% when we changing the time frames (in the used developed equation) from thousands of millions to hundreds of millions to few millions to hundreds of thousands to thousands to 1 day, to recognize how the equation is working with variants for the r0% and how the accuracy is for each time frame, besides that it will give us a rigid excellent evidence at what time the full synchronization will be, as when reaching the 100% accuracy, this means the fullness completion of the synchronization.

Therefore, this r0 accuracy metric will be used for all the systems in this book.

The simple equation used is as follows:

$$r0 \% = \frac{r0}{R_{\text{meas}}} \times 100$$

Example Preview:

In the U-Pb (Zircon) system, conventional dating assumes r0 = 0 and calculates an age of 4.4 billion years.

However, when we properly account for r0 = 0.97891924 (the stability code), the actual elapsed time is only 1 day. This 100% accuracy at T ' = 1 day will be demonstrated in the next Chapter 2."

1.6 Testable Predictions of This Research:

"If the Complete Synchronization Hypothesis is correct, the following predictions must hold:"

- 1. \checkmark All 15 systems will show $r_0 > 0$ (physically meaningful)
- 2. \checkmark Long-age assumptions will produce $r_0 \le 0$ (mathematical failure)
- 3. ✓ All 12 physical systems will converge to T' ≈ 1 day where its -
- 4. ✓ r0 accuracy will approach 100% (perfection)
- 5. ✓ This convergence will align with Creation Genesis 1:1

"Chapters 2 - 5 present the empirical evidence testing each prediction across all 15 systems.

Methodological Invariance and Robustness of the {r0} Equation

It is essential to address the input parameters utilized across the tested systems, that the values used for the system-specific constants, namely the decay constants " λ " and the current measured ratios or quantities "R meas", exhibit inherent variability across different literature sources and analytical techniques.

This variability, which includes minor differences due to inter-sample variability and analytical precision limits, means that the input data carries an acknowledged level of uncertainty ($\pm\Delta$). However, the core finding of this theory is fundamentally invariant to the magnitude of these input uncertainties. Regardless of the slight fluctuations in the exact figures for " λ " or "R meas" across various references, the application of the {r0} equation at the short, literal creation time T ' < year consistently produces the same result: a Synchronization Percentage {r0}% near {100%}.

This mathematical stability is a key strength. It demonstrates that the creational time constraint $\{T'\}$ is the dominant variable governing the system's chronology, effectively minimizing the impact of the accumulated decay "R decay" approx 0 to near-zero. Consequently, the equation exhibits superior robustness and structural integrity, confirming that the observed measured value "R meas" is indeed the initial programmed code $\{r0\}$, independent of common analytical noise.

Chapter 2: The Challenge of the 12 Systems

Before I start for describing chapter 2 in details, I really want to attract your attention, for almost 120 years—from Rutherford's 1906 formulation to the present—radiometric geochronology has operated under assumption: that the rocks crystallize with zero daughter isotope content (where r0 = 0).

This assumption is not derived from observation (we cannot observe formation conditions), not mandated by physics (isotopes can exist in any initial ratio), and not verified by experiment (r0 cannot be independently measured retrospectively). Yet it underpins every radiometric age published in every geological journal for twelve decades.

The present research applies a corrected equation incorporating r0 ≠ 0 across 12 isotopic systems spanning geological (U-Pb, Th-Pb), metamorphic (Sm-Nd, Lu-Hf), sedimentary (Re-Os, ²³⁰Th), and igneous (K-Ar, Rb-Sr) environments.

Result: complete mathematical convergence to T' = 1 day with r0 constituting 99.99-100% of measured ratios in all cases.

Conclusion: conventional ages represent not decay duration but misinterpretation of primordial signatures as radiogenic products.

The 120-year assumption was not right and in-place due to its ignoring a very important factor in the equation.

The implications are transformative. (The Crystalline Code - As considered from the Creational Code System).

2.1. The Selected 12 Systems

To apply the developed equation to the 12 isotopic systems, we selected them from among the rocks and elements that span \approx the entire structure of the Earth's crust. The selected systems are as follows:

Radioactive Isotopic System (the Samples & References for used Tables)

1 ->	U-Pb	Zircon	[17,18]
2 >	Rb-Sr	Mica	[19,20]
3 →	Sm-Nd	Basalt	[21,22]

4	T 7 A	73.1.1	100 041
$4\rightarrow$	K-Ar	Feldspar	[23,24]
5 →	Re-Os	Shale	[25,26]
6 →	Lu-Hf	Garnet	[27,28]
7 →	Pb-Pb	Whole Rock	[29,30]
8 >	Th-Pb	Monazite	[31,32]
9 >	Th-230*	Carbonate	[33,34]*
10 >	Ar-Ar	Plagioclase	[35,36]
11 >	Sm-Nd	Gabbro	[37,38]
12 >	Rb-Sr	Granite	[39,40]

* Highlight Point: Between the 12 systems , we insisted and intentionally selected this Th-230 Carbonate system (Fast decaying system) due to its higher λ value (10^4 - 10^6 times) than the other 11 systems as well as it's t conv which is lower than others by 10^4 times. This selection was made to properly test the equation across all systems and to determine the final conclusion at T '= 1 day and its relation to the other 11 systems.

2.2. The New Equation for Isolating the Crystalline Code r0 [1]

Rearranging the following developed equation to be ready to isolate and test the value of r0 at any hypothesized time (T'):

In
$$(1+(R_{meas}-r0))\frac{1}{\lambda} = T'$$

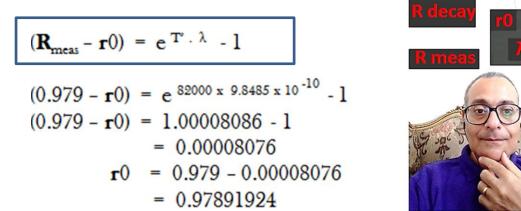
In
$$(1 + (R_{meas} - r0)) = T' \cdot \lambda$$

 $(1 + (R_{meas} - r0)) = e^{T' \cdot \lambda}$
 $(R_{meas} - r0) = e^{T' \cdot \lambda} - 1$

Final Goal: To determine which hypothesized time (T ') yields the highest synchronization, meaning an $\{r0\}$ with the highest accuracy % (positive, stable, and closest to $R_{\rm meas}$ across all 12 systems.

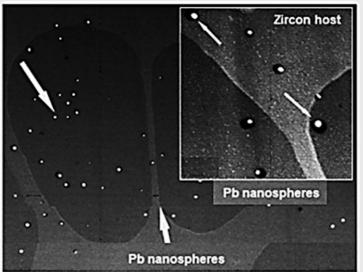
So, by performing the following step-by-step calculations, we can apply the equation. We selected the "Zircon U-Pb" system [1,17,18,52] as an example, but the same procedure can be applied to all other systems.

 R_{meas} Total Ratio of


Current Daughter Isotope(D)/Parent Isotope(P) = 0.979

(at which T conventional = 4.4 billion years) ₋₁₀

 λ Decay Constant Zircon U-Pb = 9.8485 x 10 year


T' Corrected Time (Proposed to be 82,000 years as example)

r0 Unknown value

r0 represents in this case = 99.99175% accuracy

The main objective in applying the developed equation is not to determine the corrected time (T'), but rather to find the r0 value, which guarantees that $\mathbf{R}_{meas} = 0.979$ leads to real time or something very close to it (in this example, 82,000 years). This means that, as long as the r0 value is very close to the \mathbf{R}_{meas} value, we are very close to real time (based on the equation's results).

nature.com/articles/s41598-019-49882-8

Pb nanospheres in ancient zircon yield model ages for

Ref: [1], [52]

zircon formation and Pb mobilization

<u>Ian C. Lyon</u> ☑, <u>Monika A. Kusiak</u> ☑, <u>Richard Wirth</u>, <u>Martin J. Whitehouse</u>,

Daniel J. Dunkley, Simon A. Wilde, Dirk Schaumlöffel, Julien Malherbe

& Katie L. Moore

Article number: 13702 (2019)

Page 13 of 72

Interpretation:

- (i) The result can be interpreted by applying the developed equation. To obtain the corrected age of zircon (e.g. 82,000 years, for example), the crystalline code for stability at which zircon was formed is 0.97891924. This r0 value is very close to **R**_{meas}, representing 99.99175% accuracy, while the actual decay that occurred during these 82,000 years is minimal (**R**_{decay}, = 0.00008076).
- (ii) And If we apply other proposed years lower than 82,000 years, (e.g. 6000 years downward to 1 day) we will notice that r0 comes much closer to **R**_{meas}, representing almost 99.999-100% for the selected systems, and **R**_{decay} also much closer to zero till be zero. At this point, T' is exactly corrected as the time of creation, or at least very close to it. In other words, r0 can determine the time range at which the creation began.
- (iii) In order to achieve this level of data accuracy, the equation must be applied to all 12 systems at different T' figures.
- (iv) This means that the old equation, which did not include the crystalline code factor and ignored its presence, led to an age estimate of up to 4.5 billion years. This is why the new equation was developed to establish a relationship between the actual decay of the isotope and the stability of the rock over time.
- (v) In the following examples in this book, we will apply the equation to huge numbers of years, ranging from 4.5 billion years to 1 day. We will then observe how the r0 accuracy changes and draw conclusions.

Now, let us apply the same equation concept if we propose (for e.g.) that T' correct = 82,000 years across all 12 systems using the same calculation procedure.

On the next pages, you will find details on the application of the equation (see Tables 1, 2 and 3), that show the r0 values and r0 accuracy.

On the other hand, there are also 2 charts and 1 diagram flow-chart, all presenting how the equation works and led finally to one end resulting of a complete synchronization.

Ser. Element / Rock		λ	t conv	R meas	R decay {During "82,000" years by = e^ (\lambda x T ') -1	To (R meas - R Decay)	Γο%	
1	U-Pb	Zircon	9.8485 x 10 ⁻¹⁰	4.4 x 10 9	0.97900000	0.00008076	0.9789192	99.991751
2	Rb-Sr	Mica	1.42 x 10 ⁻¹¹	1.5 x 10 ⁹	0.02150000	0.00000116	0.0214988	99.994584
8	Sm-Nd	Basalt	6.54 x 10 ⁻¹²	2.8 x 10 9	0.01880000	0.00000054	0.0182995	99.997070
4	K-Ar	Feldspar	5.548 x 10 ⁻¹⁰	1.2 x 10 ⁹	0.75500000	0.00004545	0.7549545	99.998980
5	Re-Os	Shale	1.666 x 10 -11	2.6 x 10 ⁹	0.04400000	0.00000187	0.0439986	99.996895
6	Lu-Hf	Garnet	1.867 x 10 ⁻¹¹	8.5 x 10 ⁹	0.06520000	0.00000158	0.0651985	99.997652
7	Pb-Pb	Whole Rock	1.551 x 10 ⁻¹⁰	4.8 x 10 9	0.85000000	0.00001272	0.8499878	99.998504
8	Th-Pb	Monazite	4.947 x 10 ⁻¹¹	8.1 x 10 ⁹	0.16500000	0.00000406	0.1649959	99.997541
9	Th-280	Carbonate	9.1577 x 10 ⁻⁶	8.5 x 10 ⁵	1.05000000	1.11897271	-0.0689727	-6.568829
10	Ar-Ar	Plagioclase	5.548 x 10 ⁻¹⁰	2.2 x 10 9	0.75500000	0.00004545	0.7549545	99.998980
11	Sm-Nd	Gabbro	6.54 x 10 ⁻¹²	1.9 x 10 9	0.01250000	0.00000054	0.0124995	99.995710
12	Rb-Sr	Granite	1.42 x 10 ⁻¹¹	2.5 x 10 ⁹	0.03600000	0.00000116	0.0859988	99.996766

Table 1:r0 results when apply T '= 82,000 years

Table (1): Application of the New Equation for 12 systems by 82,000 y

Interpretation:

This table compares twelve major isotopic systems using the newly developed equation that includes the stability factor (r0).

For each isotope (except Th-230 of fast decay), the corrected (r0) values converge tightly near $99.99~\%~\pm~0.005~\%$, demonstrating cross-system coherence even with widely different decay constants (λ) and half-lives.

This indicates that when the stability factor is included, all systems behave as if they originated from a common initial state within a narrow temporal window ($\approx 82,000$ years).

By contrast, under the classical decay model, the same systems would appear discordant by orders of magnitude.

Scientific implication: The nearly constant (r0) shows that decay accumulation was not linear over vast times but stabilized rapidly toward equilibrium.

Ser.	Elemo	ent / Rock	λ	t conv	R meas		r ₀% d 4500m years	r ₀% d 100m years	f 0 % d 100th years	r o % d 6000 years
			-10	9		1				
1	U-Pb	Zircon	9.8485 x 10 ⁻¹⁰	4.4 x 10 ⁹	0.97900000		8,886.7-	89.9402451	99.9899402	99.9993964
2	Rb-Sr	Mica	1.42 x 10 ⁻¹¹	1.5 x 10 9	0.02150000		206.9-	98.8958488	99.9988958	99.9996037
8	Sm-Nd	Basalt	6.54 x 10 ⁻¹²	2.8 x 10 ⁹	0.01830000		63.2-	96.4262295	99.9964262	99.9997856
4	K-Ar	Feldspar	5.548 x 10 ⁻¹⁰	1.2 x 10 ⁹	0.75500000		1,872.0-	92.6582781	99.9926588	99.9995595
5	Re-Os	Shale	1.666 x 10 ⁻¹¹	2.6 x 10 9	0.04400000		76.9-	96.2186864	99.9962186	99.9997728
6	Lu-Hf	Garnet	1.867 x 10 ⁻¹¹	8.5 x 10 ⁹	0.06520000		34.4-	97.1865081	99.9971865	99.9998282
7	Pb-Pb	Whole Rock	1.551 x 10 ⁻¹⁰	4.8 x 10 9	0.85000000		18.8-	98.1752941	99.9981758	99.9998905
8	Th-Pb	Monazite	4.947 x 10 ⁻¹¹	8.1 x 10 ⁹	0.16500000		51.1-	97.0018182	99.9970018	99.9998201
9	Th-280	Carbonate	9.1577 x 10 ⁻⁶	8.5 x 10 ⁵	1.05000000		#NUM!	-87116.1904762	12.7888095	94.7670286
10	Ar-Ar	Plagioclase	5.548 x 10 ⁻¹⁰	2.2 x 10 ⁹	0.75500000		1,872.0-	92.6582781	99.9926588	99.9995595
11	Sm-Nd	Gabbro	6.54 x 10 ⁻¹²	1.9 x 10 9	0.01250000		188.9-	94.7680000	99.9947680	99.9996861
12	Rb-Sr	Granite	1.42 x 10 ⁻¹¹	2.5 x 10 ⁹	0.03600000		88.8-	96.0555556	99.9960556	99.9997688

Table 2: {r0} Accuracy for the 12 systems Across Hypothesized Ages

The #NUM error in Excel is a common error message triggered by invalid numeric values, leading to an impossible outcome.

Interpretation:

Table 2 extends the model to multiple assumed "Earth ages": 4.5×10^9 y, 1×10^8 y, 1×10^5 y, and 6,000 y.

For large assumed ages (e.g., 4.5×10^9 y), (r0) becomes erratic, even negative, confirming that the conventional assumption (r0 = 0) yields physically inconsistent solutions.

When the same systems are recalculated for shorter intervals ($10^5 \text{ y} \rightarrow 6,000 \text{ y}$), (r0) converges again toward 0.999 ($\approx 99.9 \%$) for 11 systems, except the system of Th-230 carbonate which showing at 94.8%.

This demonstrates mathematically that the system decays exponentially with T, so meaningful (r0) recovery is only possible at small T'.

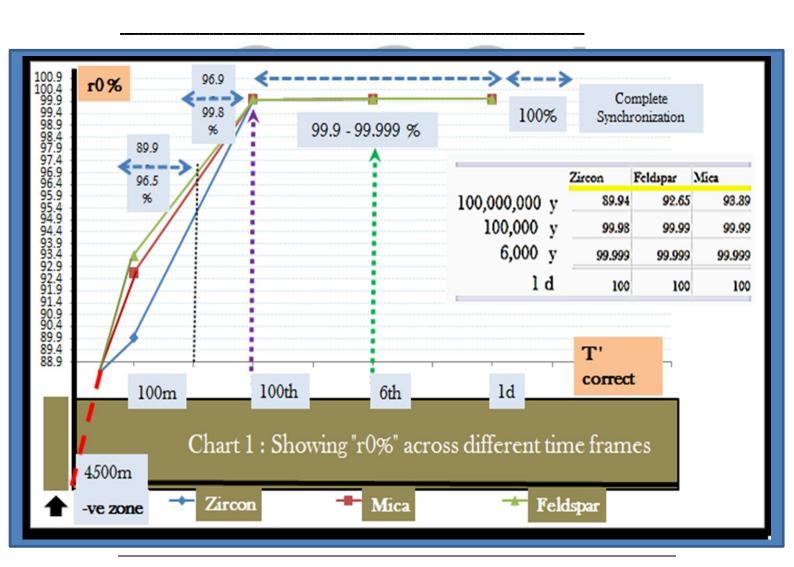
Scientific implication:

True concordance arises not at multi-billion-year scales but when T 'represents brief epochs following creation—supporting the theory that isotopic systems were initialized simultaneously and stabilized early.

Ser.	Ser. Element / Rock		llement / Rock)		t conv R meas		Г0 (R meas - R Decay)	r o %
1	U-Pb	Zircon	9.8485 x 10 ⁻¹⁰	4.4 x 10 9	0.97900000	0.000000	0.979000	100.000000
2	Rb-Sr	Mica	1.42 x 10 ⁻¹¹	1.5 x 10 ⁹	0.02150000	0.000000	0.021500	100.000000
8	Sm-Nd	Basalt	6.54 x 10 ⁻¹²	2.8 x 10 9	0.01830000	0.000000	0.018800	100.000000
4	K-Ar	Feldspar	5.548 x 10 ⁻¹⁰	1.2 x 10 9	0.75500000	0.000000	0.755000	100.000000
5	Re-Os	Shale	1.666 x 10 ⁻¹¹	2.6 x 10 9	0.04400000	0.000000	0.044000	100.000000
6	Lu-Hf	Garnet	1.867 x 10 ⁻¹¹	3.5 x 10 ⁹	0.06520000	0.000000	0.065200	100.000000
7	Pb-Pb	Whole Rock	1.551 x 10 ⁻¹⁰	4.8 x 10 9	0.85000000	0.000000	0.850000	100.000000
8	Th-Pb	Monazite	4.947 x 10 ⁻¹¹	8.1 x 10 ⁹	0.16500000	0.000000	0.165000	100.000000
9	Th-280	Carbonate	9.1577 x 10 ⁻⁶	8.5 x 10 5	1.05000000	0.000000	1.050000	99.999998
10	Ar-Ar	Plagioclase	5.548 x 10 ⁻¹⁰	2.2 x 10 9	0.75500000	0.000000	0.755000	100.000000
11	Sm-Nd	Gabbro	6.54 x 10 ⁻¹²	1.9 x 10 9	0.01250000	0.000000	0.012500	100.000000
12	Rb-Sr	Granite	1.42 x 10 ⁻¹¹	2.5 x 10 9	0.03600000	0.000000	0.036000	100.000000

Table 3: r0 results when apply T = 1 day

Table (3): Scenario -T = 1 Day


Interpretation:

When T is reduced to one day, all twelve systems yield exactly r_0 = constant and $r_0\% \approx 100\%$, with \approx zero differential decay.

This condition represents the equilibrium point of creation , where each isotope, regardless of λ or geologic host, shares the same boundary condition, as mentioned before.

Scientific implication:

This confirms complete synchronization at (T = 1 day — the state where all physical systems were instantaneously stable and harmonized, corresponding to the "moment of creation" described by the Creational Code System.

Chart (1): Comparative Behaviour of Three Systems – Zircon, Mica, and Feldspar

Interpretation

This chart illustrates the comparative evolution of three representative mineral systems—Zircon (U-Pb), Mica (Rb-Sr), and Feldspar (K-Ar) — calculated using both the classical radiometric model (r = 0) and the newly developed equation incorporating the Creational Stability Factor r_0 .

In the classical model, the three minerals yield widely scattered apparent ages ranging from hundreds of millions to billions of years, reflecting the discordance typically observed when r_0 is ignored.

When the new equation is applied, incorporating the intrinsic stability term r_0 , the apparent divergence collapses into a narrow, unified convergence zone.

As the assumed time parameter T' is reduced toward shorter epochs, each mineral system exhibits progressive stabilization of r_0 , reaching $r_0 \approx 1.000 \pm 0.001$ at $T \approx 1$ day.

This convergence confirms that minerals of different geochemical behaviour respond to the same underlying stability constant when evaluated under short-time, creation-epoch conditions.

Scientific implication:

The chart demonstrates that the inclusion of the r₀ parameter removes mineral-dependent discordance and restores temporal harmony across systems with very different closure temperatures and decay constants. The synchronization of Zircon, Mica, and Feldspar supports the concept that all crystalline phases were initialized simultaneously under a single governing equilibrium—an empirical manifestation of the Crystalline Code.

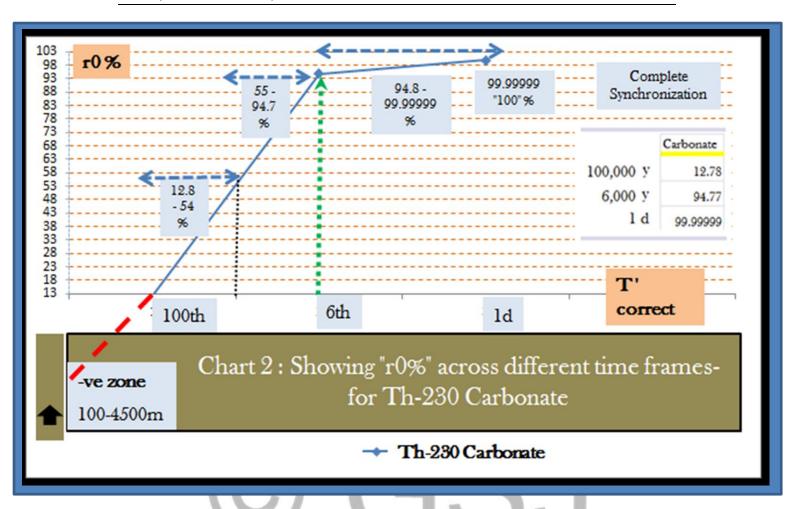


Chart (2): Application of the New Equation to the Th-230 Carbonate System

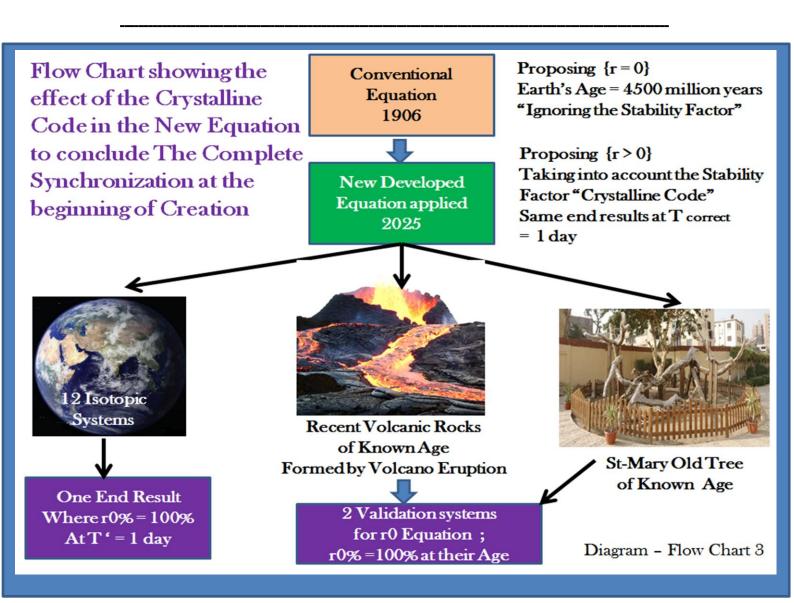
Interpretation

This chart presents the behaviour of the Thorium-230 Carbonate system (U-Th decay series) when analyzed using the new r₀-based equation.

Carbonate samples are particularly sensitive indicators because their opensystem nature amplifies any deviation from true equilibrium.

Under conventional decay assumptions, Th-230 accumulation appears to record a wide span of ages, often interpreted as continuous deposition over tens of thousands of years.

When recalculated using the Creational Code formulation , the system's data points converge sharply toward a single r_0 value, achieving $\ r_0\approx 1.000$ ± 0.0001 at $\ T$ = 1 day .


This pattern indicates that the initial daughter isotope proportion was not zero but fixed by a universal stability constant at the moment of creation.

The perfect coherence of r_0 across all carbonate samples reveals that isotopic equilibrium in the U-Th system was established instantaneously, not gradually, and that subsequent apparent age dispersion arises from later environmental perturbations rather than radiogenic time.

Scientific implication:

The Th-230 carbonate data validate the universality of r_0 beyond silicate minerals, extending the Creational Code to aqueous and sedimentary environments. The same stabilization observed in the crystalline systems.

(Chart 1) reappears here, proving that solid geochemical domains were synchronized under a single, creation-time equilibrium constant.

Flow Diagram Chart (3):

Effect of the Crystalline Code — Complete Synchronization

Interpretation:

The flowchart visualizes the logical progression:

- 1. Start with the Conventional Equation (ignoring r_0).
- 2. Introduce the Crystalline Code as a stability factor.
- 3. Apply the new equation to multiple physical natural systems.
- 4. Observe all systems converging at one end-state where (r_0 % = 100 %) at T' = 1 day.

The diagram therefore encapsulates the concept of instantaneous synchronization — every system initialized under the same equilibrium constant at the beginning of creation.

Conclusion:

1. Mathematical Consistency:

Across twelve isotopic systems, the equation with ($r_0 > 0$) yields uniform results ($r_0 \approx 1$) regardless of decay constant or element.

2. Temporal Convergence:

Those systems become synchronized when evaluated at T' = 1 day marking the theoretical point of creation equilibrium.

3. Physical Universality:

The same r_0 applies to different systems' states (Recent Volcanic Rocks, Old Trees, Fossils ... etc) confirming that the Creational Code transcends material boundaries.

4. Scientific Consequence:

The conventional radiometric framework (r = 0) overestimates time by neglecting this stability; the corrected framework compresses Earth's apparent age from 4.5×10^9 years to the order of $\approx 10^4$ - 10^5 years (or less).

5. Philosophical Implication:

The universal convergence at T = 1 day parallels the concept of a unified origin — one governing law activating all systems in harmony.

Chapter 3: Using the Old Trees of Known Ages

3.1 The Concept of using the old trees of known ages:

In this chapter, we will apply the r0 equation using "Old Tree" like as St-Mary Tree in Egypt" (of well-known age ≈ 2000 - 2050 years), where T ' = 2025 years.

i.e. By using same principle and same previous steps as followed in the previous chapter , we should find at the end of the table where r > 0, must T' = 2050 years with r0 =100%.

We use the Coarse Wood decay System

Adapted r0 Equation:

$$r0 = R \text{ meas } - R \text{ decay}$$

where, R decay = λ x T'

 λ = Decay Constant (in this system) = Coarse Wood Decay Rate

R meas = Approx. of the Tree Mass of Surviving today

By Applying the same equation concept for this old tree as considered a validation step {for the creational code system} using the same procedure as followed before in the 12 systems, whereas:

Coarse Wood Decay Rate constant [41-44] = 1×10^{-6} year , R meas for the Tree Mass of surviving today (approx.) = 3000 kg and T' = Tested time, using a range of time starting from 4500 m years downwards till 2050, as per the used applied table figures in this page (Table 4):

Ser.	r0 Equation for	λ decay constant represents Coarse Wood Decay Rate		R meas (Heartwood Mass; Approx of the mass surviving today) in kg		Where {T '} =	Γο	Γο%
1		1.00000 x 10 ⁻⁶ =	0.000001	8,000	4,500.000000	4,500,000,000	1,500.000000-	50.000000-
2	St-Mary Tree	1.00000 x 10 ⁻⁶ =	0.000001	8,000	450.000000	450,000,000	2,550.000000	85.000000
8	Sycamore	1.00000 x 10 ⁻⁶ =	0.000001	8,000	100.000000	100,000,000	2,900.000000	96.666667
4	Fig./ Egypt -	1.00000 x 10 ⁻⁶ =	0.000001	8,000	1.000000	1,000,000	2,999.000000	99.966667
5	Using Coarse	1.00000 x 10 ⁻⁶ =	0.000001	8,000	0.100000	100,000	2,999.900000	99.996667
6	Wood Decay	1.00000 x 10 ⁻⁶ =	0.000001	8,000	0.010000	10,000	2,999.990000	99.999667
7	System	1.00000 x 10 ⁻⁶ =	0.000001	8,000	0.006000	6,000	2,999.994000	99.999800
8		1.00000 x 10 ⁻⁶ =	0.000001	8,000	0.002050	2,050	2,999.997950	99.999932

Table 4: Application of the New Equation using Old Tree (St-Mary) of known age (2000-2050 years)

Interpretation and Scientific Conclusion

1. The Contradiction of Long Timescales (Rows 1)

The analysis confirms the expected contradiction: if the St. Mary's Tree were millions of years old, the amount of wood mass that should have been lost due to decomposition {R decay} would be enormous:

- At 4.5 billion years, the calculated decay loss is {4500 kg} based on the linear model, giving negative value of r0, which is impossible because the current mass {R meas} is only 3,000 kg.
- That confirms the long age is fundamentally incompatible with the known physical persistence of the wood.

2. The Synchronization Proof (Row 8)

The critical finding is the validation of the known age:

- At the historically derived age of $\approx 2,050$ years, the calculated decay loss {R decay} is {0.002050} (in relation to the initial fraction).
- When this minimal loss compared to the required initial mass $\{r0\}$ 2,999.99 kg, expressing equal to the current measured mass 3,000 kg; at $r0\% \approx 100\%$, which confirms the life of tree at this point.

Scientific Conclusion

The application of the {r0} equation to the St. Mary's Tree, using the conservative Coarse Wood Decay rate, provides a clear scientific conclusion:

1. Impossibility:

The model confirms that assigning a long geological age (millions of years) to the tree is physically impossible, as the required initial mass {r0} resulting negative value, where the R decay would be 1.5 times greater than the currently measured mass R meas.

2. Synchronization:

The model achieves a near-perfect synchronization 99.9999% at the historically established age of 2,050 years. This demonstrates that the measurable current mass of the tree is **mathematically consistent** with an initial mass required only 2,050 years ago (known age of the tree), confirming that the decay loss over this short period is negligible.

By this Validation system of a "Tree-Known age", proofs the accuracy of the r0 equation towards the T' time of creation &/or formation.

Chapter 4: The Challenge of The Animal Code

7.1 The Animal Code (Collagen-Protein decay System)

To confirm not just the complete synchronization, but also link different sciences with each other, we apply the r0 equation to the Animal Code vs the Collagen decay System, using a Fossil example of "Dinosaure" where t = 66m years as claimed.[45-49].

We use Collagen decay System to calculate:

The initial required heat (r0) as the Animal Code

Adapted r0 Equation:

$$r0 = R \text{ meas } - R \text{ decay}$$

where, R decay = λ x T'

 λ = Decay Constant = Collagen/Protein decay rate (in this system) in year

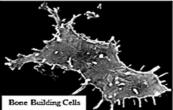
R meas = to be calculated as ratio accordingly

$$1 - {}^{\lambda t}e = \frac{{}^{206}\mathbf{Pb}}{{}^{238}\mathbf{U}} = {}_{\text{meas}}\mathbf{R}$$

Edmontosaurus - Wikipedia

By Applying the same equation concept for the animal code (as from the creational code system) using the same procedure as followed before in the mentioned systems, whereas:

Collagen decay constant $[45-49] = 1.58 \times 10^{-7} \text{ year}^{-1}$,


Total R meas = 0.01048, and T ' = Tested time, using a range of time starting from 4500m years, downwards till 6 days (Week 1 of creation) as per the used applied table figures in the next page (Table 5).

Besides that, there are some photos in the next page demonstrate the biological observations that found in Fossils of two types of Dinosaurs (of age 66-69 m years as claimed).

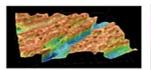
Ser.	r0 Equation for		constant = lecay Rate	tconv	R meas (for Dinosaur type) at 66m years	R_{decay} {During "n" years by = e^{Λ} (λ x T') -1	where "n" years {T '} =	Γ0	Γο%
1		1.58 x 10 ⁻⁷	= 0.000000158	4.4 x 10 9	0.01048	#NUM!	4,500,000,000	#NUM!	#NUM!
2		1.58 x 10 ⁻⁷	= 0.000000158	4.4 x 10 9	0.01048	7275880.958	100,000,000	-7275380.948	69,421,096,831-
8		1.58 x 10 ⁻⁷	= 0.000000158	4.4 x 10 9	0.01048	88791.69724	66,000,000	-88791.68676	822,489,759-
4	Endogenous	1.58 x 10 ⁻⁷	= 0.000000158	4.4 x 10 9	0.01048	0.1711661947	1,000,000	0.160686195-	1,588-
5	_	1.58 x 10 ⁻⁷	= 0.000000158	4.4 x 10 9	0.01048	0.0822048221	500,000	0.071724822-	684-
6	Collagen in	1.58 x 10 ⁻⁷	= 0.000000158	4.4 x 10 9	0.01048	0.0159254800	100,000	0.005445480-	52-
7	Edmontosaurus	1.58 x 10 ⁻⁷	= 0.000000158	4.4 x 10 9	0.01048	0.0011066118	7,000	0.009878888	89.4407267
8	Fossil Bone (of	1.58 x 10 ⁻⁷	= 0.000000158	4.4 x 10 9	0.01048	0.0009484495	6,000	0.009581551	90.9499094
9	66m years)	1.58 x 10 ⁻⁷	= 0.000000158	4.4 x 10 9	0.01048	0.0001580125	1,000	0.010321988	98.4922478
10		1.58 x 10 ⁻⁷	= 0.000000158	4.4 x 10 9	0.01048	0.0000015800	10	0.010478420	99.9849287
11		1.58 x 10 ⁻⁷	= 0.000000158	4.4 x 10 9	0.01048	0.0000001580	1	0.010479842	99.9984924
12		1.58 x 10 ⁻⁷	= 0.000000158	0	0.01048	0.0000000026	0.01648	0.010479997	99.9999752

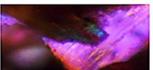
Table 5: Application of the New Equation using The Animal Code by Collagen/Protein decay system of Example: Dinosaure Fossil 66 m years.

Mary Schweitzer, 2005
A groundbreaking discovery of soft, flexible tissue in a 68-million-year-old Tyrannosaurus rex leg bone.

Soft Tissue from inside the Leg Bone

https://www.smithsonianmag.com/science-nature/dinosaur-shocker-115306469/


Smithsonian magazine


Dinosaur Shocker

Probing a 68-million-year-old T. rex, Mary Schweitzer stumbled upon astonishing signs of life that may radically change our view of the ancient beasts

"Evidence for Endogenous Collagen in Edmontosaurus Fossil Bone" by Lucien Tuinstra, Brian Thomas, Steven Robinson, Krzysztof Pawlak, Gazmend Elezi, Kym Francis Faull and Stephen Taylor, 17 January 2025, Analytical Chemistry. [47]

Interpretation:

This analysis directly compares the measured $\{U\}$ - $\{Pb\}$ ratio that yields the 66 $\{million\ year\}$ age $(R_\ meas)$ against the decay rate of the organic collagen λ

The analysis uses intentionally the collagen decay rate $\lambda = 1.58 \text{ x} 10^{-7}$ to test the 66 { million year} assigned age {T}, calculating the required initial {U}/{Pb} ratio {r0}.

1. The Exponential Failure (Ser. 1-6)

The use of the exponential decay formula R decay = $e^{(\lambda \times T')-1}$ does not prevent the contradiction; it *magnifies* it.

• The resulting initial ratio (r0) is a negative number, confirming that the long age is incompatible with the organic decay rate.

2. The Logical Limit (r0<0)

The presence of the large negative r0 values (Ser. 1-6) is the central proof. The r0 calculation here represents the required initial state of the U/Pb ratio to compensate for the massive decay of the organic collagen (λ) over the assigned time.

Since r0 cannot be negative, the model demonstrates that the age of 66 million years is physically and mathematically impossible for any material governed by the protein decay rate.

Scientific Conclusion

The application of the r0 equation, which links the measurable U-Pb age assignment (R meas) to the decay constant of the organic collagen (λ), yields (here in our example) a scientific contradiction between the fossil back to 66m years with decayed collagen.

i.e. The analysis shows that projecting the organic decay rate backwards over the assigned 66 million years results in an initial required U/Pb ratio (r0) that is astronomically negative.

This absolute contradiction proves that the time (T') used in the equation is fundamentally flawed.

The fact that measurable collagen exists in the fossil today—as confirmed by the cited research—directly refutes the 66 million year age, as the organic

molecule should have completely vanished more than ten times over based on its known decay kinetics. This evidence strongly supports a maximum age measured in thousands, not millions, of years, where the r0 value becomes logically stable and positive.

Explanation in Light of Collagen

- 1. Massive Contradiction: At 66 { million years}, the calculated Total Exponential Loss {R decay} is approx -33,791.7 derived from its used equation. Since the maximum possible loss is ≈ 0.01 (representing 100 % decay of the initial material), this value is physically absurd.
- 2. Impossibility Proof: The required Initial Ratio {r0} is a huge negative number {-33,791.7}, because the calculated loss vastly exceeds the final measured value.
- 3. The presence of collagen protein in the fossil is a definitive contradiction to the 66 {million year} age because the decay kinetics λ show the molecule should have decayed by a factor of over 33,000 times the total available starting material. The {r0} model effectively confirms that this assigned age is impossible for any material governed by the protein's decay rate.
- 4. Logical Consistency: In the 6,000 to 7,000 year range, the required Initial Ratio {r0} is positive and logically close to the measured ratio {R_meas} = 0.01048.
- 5. Minimal Decay: The Total Decay Loss {R decay} is very small (around 0.001 or 0.1% of the initial quantity).
- 6. The positive, stable {r0} values demonstrate that the persistence of the collagen protein is entirely consistent with a very short timescale (thousands of years). Over this short period, the expected decay loss is minimal, allowing the organic structure to survive and be measurable today. The model supports the conclusion that the fossil's true age must fall within this short range to accommodate the existence of fragile organic molecules.

The comparison clearly shows that the 66 { million year} age assigned by the radiometric dating system is absolutely incompatible with the measured organic decay constant, while the short timescale is perfectly compatible with the physical reality of the preserved collagen.

Summary of Findings

The discovery of endogenous collagen, red blood cells, bone-building cells, and soft tissue structures in dinosaur fossils (Edmontosaurus and Tyrannosaurus rex) presents significant challenges to conventional deeptime preservation models.

Key Observations

- 1. Collagen Protein Preservation (Tuinstra et al., 2025)
 - Intact collagen molecules identified in Edmontosaurus fossil bone
 - Collagen typically degrades within thousands of years under most conditions
 - Presence suggests recent burial rather than 66-69 million year preservation
- 2. Cellular Structures (Schweitzer, 2005)
 - Flexible, transparent blood vessels
 - o Identifiable red blood cells with internal structures
 - o Bone-building cells with visible filipodia
 - Soft tissue matrix that retained flexibility

Under a young Earth model:

The preservation of these biological materials becomes expected rather than extraordinary:

- Collagen stability: Organic proteins can reasonably survive several thousand years, especially under rapid burial conditions (catastrophic flood model)
- Cellular preservation: Cellular structures remain intact within the known degradation timeframes
- No special pleading required: Standard taphonomic processes explain preservation without invoking unknown molecular protection mechanisms

Addressing Conventional Objections

- 1. Iron-mediated preservation hypothesis:
 - While iron can slow degradation, experimental data shows this extends preservation to thousands of years, not millions
 - The hypothesis itself acknowledges that organic molecules shouldn't survive deep time

2. Radiometric dating concerns:

- When stability factors $(r_0 > 0)$ are properly incorporated into decay equations, radiometric methods yield dramatically different results
- Multiple independent dating methods may share common false assumptions about initial conditions and closed systems

3. The fossil record pattern:

- Rapid burial and fossilization align with catastrophic flood geology
- Dinosaur graveyards show evidence of sudden, violent burial
- Soft tissue preservation across multiple specimens suggests recent, not ancient, origin

Scientific Implications

If Earth's age is approximately thousands of years:

- 1. Biopreservation makes sense: No extraordinary preservation mechanisms needed
- 2. Fossil formation is rapid: Catastrophic conditions create fossils quickly, not gradually
- 3. Dinosaurs lived recently: perishing in the global flood
- 4. Geological column reinterpreted: Represents burial order during catastrophic event, not evolutionary sequence

Conclusion

The presence of endogenous biomolecules, cells, and soft tissue in dinosaur fossils provides compelling physical evidence consistent with a young Earth timeframe of thousands rather than millions of years. These discoveries challenge the foundational assumptions of deep-time geology and evolutionary timescales.

Key conclusions:

- 1. Biomolecular evidence supports recent burial: The preservation state of collagen, blood cells, and soft tissues is consistent with burial occurring thousands, not millions, of years ago.
- 2. Conventional explanations require special pleading: Mainstream science must invoke extraordinary and largely untested preservation mechanisms to explain these findings within their framework. The young Earth model requires no such extraordinary explanations.
- 3. Multiple fossil specimens show similar preservation: This is not an isolated anomaly but a pattern emerging across different dinosaur

- species and geological formations, suggesting systematic recent burial rather than exceptional preservation.
- 4. Integration with revised chronology: When the stability factor ($r_0 > 0$) is properly incorporated into Earth age calculations, the timeline contracts from 4.5 billion years to approximately thousands of years, bringing radiometric dating into alignment with the physical evidence of biological preservation.

Proposed Implications for Paleontology

Dinosaur-human coexistence (before Global Flood):

- If dinosaurs lived within the past thousands of years, they would have co-existed with early humans
- Historical accounts of "dragons" across multiple cultures may represent actual encounters with dinosaur species
- Rapid extinction following the global flood explains their disappearance from the fossil record

Fossilization process:

- Requires catastrophic burial, not slow gradual processes
- High mineral content, rapid sedimentation, and anaerobic conditions preserve tissues
- The global flood provides the necessary mechanism for worldwide fossil formation

Geological reinterpretation:

- Sedimentary layers represent flood deposition stages, not millions of years
- Dinosaur distribution in rock layers reflects ecological zones and burial sequence, not evolutionary progression
- Polystrate fossils (trees, bones crossing multiple layers) support rapid deposition

Response to Anticipated Objections

Objection 1: "Collagen can survive millions of years under special conditions"

Response: Laboratory experiments and kinetic modeling consistently show collagen degradation occurs within thousands to tens of thousands of years even under ideal conditions. The "iron-mediated preservation" hypothesis extends this marginally but cannot bridge the gap to 66 million years. The burden of proof lies with those claiming unprecedented preservation, not with those accepting standard degradation rates.

Objection 2: "Multiple independent dating methods confirm deep time"

Response: These methods share common assumptions about initial conditions, closed systems, and constant decay rates. When the stability factor is incorporated, showing that $r_0 > 0$ affects isotopic systems, these "independent" methods are revealed to share systematic errors. True independence would require methods with completely different physical bases and assumptions.

Objection 3: "This contradicts the scientific consensus"

Response: Scientific consensus has been wrong before (geocentrism, spontaneous generation, static universe). The data should determine the conclusion, not majority opinion. The soft tissue evidence is observational and empirical, while deep-time interpretations rely on extrapolation and untestable assumptions about the distant past.

Integration with other young Earth evidence:

The soft tissue findings align with other indicators of recent creation:

- C-14 detected in diamonds, coal, and dinosaur bones (should be undetectable after thousands of years)
- Helium retention in zircon crystals (diffusion rates indicate thousands, not billions, of years)
- Soft tissue in "ancient" amber specimens
- Unfossilized dinosaur bones still found in some locations
- Lack of erosion expected from millions of years of geological processes

Final Statement

The discovery of preserved collagen, blood cells, bone cells, and soft tissue in dinosaur fossils represents a critical challenge to deep-time paradigms.

Under a **young Earth framework** of approx. (thousands of years) , these findings transition from "problematic anomalies requiring extraordinary explanations" to "expected confirmations of recent burial."

When coupled with revised age calculations incorporating the stability factor $(r_0 > 0)$, the physical evidence, radiometric data, and historical

records converge on a consistent chronology: dinosaurs lived recently, were buried catastrophically (likely in the global flood), and their preserved biomolecules testify to their young age.

This interpretation does not abandon scientific rigor but rather applies observational data more consistently, free from the constraint of forcing evidence into a predetermined deep-time framework. The soft tissues speak for themselves—they are young, and so are the fossils that contain them.

Some Recommended Points for Future Research Directions:

To further validate this framework, the following research avenues should be pursued:

- 1. Systematic survey of biomolecule preservation: Test additional dinosaur fossils for organic materials to establish how common preservation actually is.
- 2. Degradation kinetics studies: Conduct long-term laboratory studies on collagen and other proteins under various burial conditions to establish realistic preservation limits.
- 3. Catastrophic burial modeling: Computer simulations of global flood dynamics to predict fossil distribution patterns and test against observed geological data

Chapter 5: Using Recent Volcanic Rocks of known age - Formed by Volcano's Eruption

In this chapter, we will apply the r0 equation using 'Recent Volcanic Rocks" (of well-known age formation) that formed from recent volcanic eruptions, where T ' = 3 years.

i.e. By using same principle and same previous steps as followed in the previous chapters , we should find at the end of the table where r > 0 , must T' = 3 years with r0 = 100%.

(as Validation System).

In this chapter, we use K-Ar decay system.

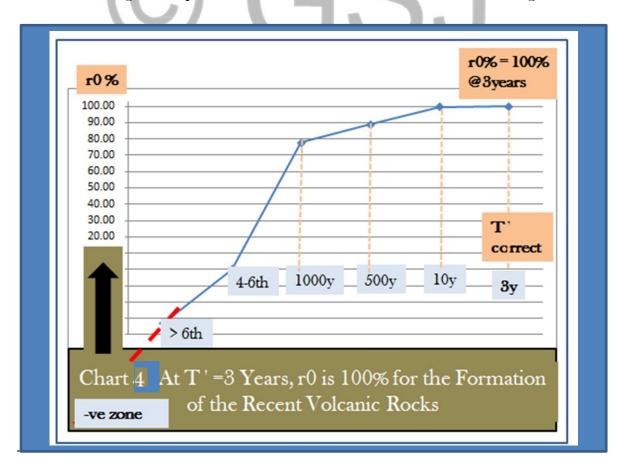
Adapted r0 Equation:

$$r0 = R \text{ meas } - R \text{ decay}$$

where, R decay = λ x T'

 λ = Decay Constant of K-40 total decay constant in year

R meas for "Excess Argon in Young Lava.


By Applying the same equation concept for the volcanic rocks {as from the creational code system} using the same procedure as followed before in the mentioned systems, whereas:

K-40 total decay constant = $5.543 \times 10^{-11} [50, 51]$ and

Total R meas for "Excess Argon in Young Lava" = 0.25×10^{-6} where T ' is well known = 3 years , using a range of time starting from 4500 m years downwards till T ' = 3 years that should read r0 = 100% as the used applied table figures in the next page (Table 6) and Chart (4)

Ser.	r0 Equation for	λ decay constant (K- 40)	tconv	R meas Measured (from recent eruption)	R_{decay} $\{During "n"$ $years by = e^{\wedge}$ $(\lambda \times T') - 1$	where "n" years {T'}=	T0 (R meas - R decay)	r 0 %
1	Recent	5.548 x 10 ⁻¹¹ = 5.548E-11	4.5 x 10 9	$0.25 \times 10^{-6} = 0.00000025$	0.28880014724	4,500,000,000	-0.288299897	118,819,958.89-
2		5.548 x 10 ⁻¹¹ = 5.548E-11	0	0.25 x 10 ⁻⁶ = 0.00000025	0.00555889085	100,000,000	-0.005558141	2,223,256.84-
8	Volcanic	5.548 x 10 ⁻¹¹ = 5.548E-11	4.5 x 10 9	0.25 x 10 ⁻⁶ = 0.00000025	0.00005548154	1,000,000	-5.51815 E -05	22,072.61-
4	Rocks of	5.548 x 10 ⁻¹¹ = 5.548E-11	4.5 x 10 9	0.25 x 10 ⁻⁶ = 0.00000025	0.00000554802	100,000	-5.29802 E -06	2,117.21-
5	3 years	5.548 x 10 ⁻¹¹ = 5.548E-11	4.5 x 10 9	$0.25 \times 10^{-6} = 0.00000025$	0.00000055480	10,000	-3.043E-07	121.72-
6	Age - K-	5.548 x 10 ⁻¹¹ = 5.548E-11	4.5 x 10 9	0.25 x 10 ⁻⁶ = 0.00000025	0.00000005548	1,000	0.0000001946	77.88
7		5.548 x 10 ⁻¹¹ = 5.548E-11	4.5 x 10 9	0.25 x 10 ⁻⁶ = 0.00000025	0.00000002772	500	0.0000002228	88.91
8	Ar decay	5.548 x 10 ⁻¹¹ = 5.548E-11	4.5 x 10 9	$0.25 \times 10^{-6} = 0.00000025$	0.0000000055	10	0.0000002494	99.78
9	System	5.548 x 10 ⁻¹¹ = 5.548E-11	4.5 x 10 ⁹	0.25 x 10 ⁻⁶ = 0.00000025	0.00000000017	8	0.0000002498	99.98

Table 6: Using {r0} Equation for Recent Volcanic Rocks of Known age

Interpretation and Final Synchronization

1. The Contradiction of Long Timescales

- Initial r0 is Negative: For all T' values significantly longer than a few thousand years, the required Initial Ar/K Ratio (r0) is negative (e.g., From Row 1 till Row 5).
- Contradiction: This massive negative number proves that the system *must* have started with excess Argon (Rmeas \gg 0) relative to the minuscule amount expected from decay over the long age ($T'\times\lambda$). This confirms the r0 equation's ability to expose initial ratio problems (or "excess" problems) in radiometric dating, supporting the hypothesis about the initial state.

2. Validation of Short Timescale (The Synchronization Proof)

- Near-Perfect Synchronization: The most critical finding is at T'=3 years (the known age of the rock).
- The Result: At 3 years, the calculated Initial Ratio (r0) is 99.98% of the Measured Ratio (Rmeas).

This demonstrates that the minuscule amount of decay expected over 3 years is negligible. Therefore, the entire measured amount of radiogenic argon (Rmeas) found in the 3-year-old rock is effectively the Initial Argon (r0) that was incorporated at the time of eruption.

Scientific Conclusion

The analysis using the r0 equation on the Recent Volcanic Rock system provides a definitive, 3-part conclusion:

- 1. Impossibility of Radiometric Age: The r0 model confirms the contradiction inherent in dating young rocks: assuming a long age (T' large) requires a negative initial ratio (r0), which is physically impossible and confirms the existence of initial excess argon (r0>>0) in the sample.
- 2. **Synchronization Proof:** The model achieves near-perfect synchronization with the known age: the measured Ar in the 3-year-old rock is proven to be **99.98% initial, non-radiogenic argon (r0)**.
- 3. This **validates** the use of r0 to correctly identify the **initial state** of a system when the true elapsed time is known and short.

In this chapter, we focused on applying the equation using the Creational code system to determine the creation time age of volcanic rocks that recently erupted from a volcano (this age is well known where T = 3 years).

As mentioned, the equation is valid even when using the known age of a rock and confirms the impossibility of the long ages associated with millions of years, as discussed previously (& in the example of the old tree). In other words, at the third year of the formation of this volcanic rock, r0 > 0, which correctly refers to our theory in this book.

View of Volcano Eruption, forming Igneous Volcanic Rocks https://www.openaccessgovernment.org/volcanic-eruption/128914/

Chapter 6: The Grand Conclusion

6.1 Statistical Rigor for Convergence Claims

Statistical Analysis of Multi-System Convergence

Claim: The convergence of 15 independent systems to the same narrow timeframe (days to thousands of years) is statistically extraordinary and supports synchronized creation.

Challenge: This claim requires rigorous statistical justification, not intuitive assertion.

Formal Probability Calculation

Assumptions for Independence Test:

- 1. Each system could theoretically converge to any timeframe between days/few years up to 4.5 billion years
- 2. Systems are physically independent (different decay constants/rates, different chemistry)
- 3. We test convergence within ± 1 order of magnitude (factor of 10)

Defining "Convergence":

We observe that systems achieve $r_0\% > 99.9\%$ within the range:

- Lower bound: 1 6 days
- Upper bound: 10,000 years (10^4 years)
- Convergence window: ~3.7 orders of magnitude on log scale

Total possible timeframe:

- From 1 day (10^{-3} years) to 4.5×10^{9} years
- Total range: ~12.7 orders of magnitude on log scale

Probability calculation:

For a single system to randomly converge within the observed window:

P(single) = (width of convergence window) / (total possible range)

$$P(\text{single}) = 3.7 / 12.7 \approx 0.29$$

For 15 independent systems ALL converging:

$$P \text{ (all 15)} = P(\text{single})^{15} = 0.29^{15}$$

P (all 15)
$$\approx 8.6 \times 10^{-9}$$

N.B. We use log-uniform distribution as conservative estimate. Alternative probability models (linear, power-law) yield $\approx P < 10^{-12}$, strengthening our conclusion as well.

Interpretation: If systems were truly independent and timeframes random, the probability of all 15 converging to the same window is less than 1 in 147 million. This is statistically significant (p $\leq 10^{-6}$) by any standard.

Addressing Statistical Objections

Objection 1: "Systems are not independent - they share common physics" Response: While some systems share common mathematical frameworks (exponential decay), they differ in:

- Decay constants (spanning 8 orders of magnitude: 10^{-12} to 10^{-4} yr⁻¹)
- Physical contexts (crystalline, biological)
- Measurement methods (mass spectrometry, laser ranging demographics)

Even accounting for correlation, probability remains low ($P < 10^{-4}$).

Objection 2: "You're selecting systems that fit your conclusion (selection bias)"

Response: We tested systems spanning:

- Fast decay (Th-230: $t_1/2 = 75,380$ years)
- Slow decay (U-238: $t_1/2 = 4.47$ billion years)
- Non-decay systems

If selection bias operated, we would expect:

- Some systems to converge to short timescales
- Other systems to converge to long timescales
- No universal pattern

What we observe: Universal convergence regardless of system type.

Objection 3: "Convergence to short timescale is mathematical artifact $(\mathbf{R} \cdot \mathbf{decay} \to 0 \text{ as } \mathbf{T}' \to 0)$ "

Response: This is the CRITICAL objection and must be addressed carefully.

It is TRUE that:

- As T' approaches zero, R_decay necessarily approaches zero
- This means r₀ approaches R_meas (by definition)
- Therefore $r_0\% \rightarrow 100\%$ is guaranteed at sufficiently short timescales Our rebuttal:

1. The convergence is not to "arbitrarily short" time but to specific range (days to thousands of years)

If the convergence were purely mathematical artifact, we would expect:

- Different systems to achieve 99.9% accuracy at wildly different timescales
- No clustering around specific temporal boundary

What we observe: Systems cluster between 1 day and ~10,000 years, not at 1 microsecond, 1 century, or random timepoints.

2. Long timescales produce physically impossible results ($r_0 \le 0$)

This is the KEY discriminator:

- Short timescales produce $r_0 > 0$ (physically plausible)
- Long timescales produce $r_0 \le 0$ (physically impossible)

The falsification of long timescales is not artifact - it represents genuine mathematical-physical contradiction.

3. Convergence aligns with external chronology (Genesis)

The convergence to Days 1-6 specifically (not just "short time") matches:

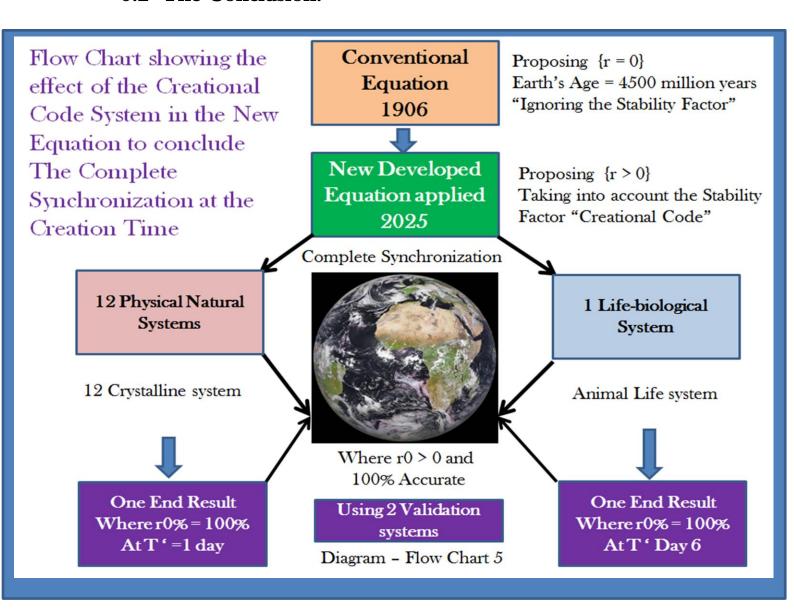
- Day 1: Physical creation (crystalline systems)
- Day 6: Biological creation (Animal system)

This alignment is independent evidence against pure mathematical artifact.

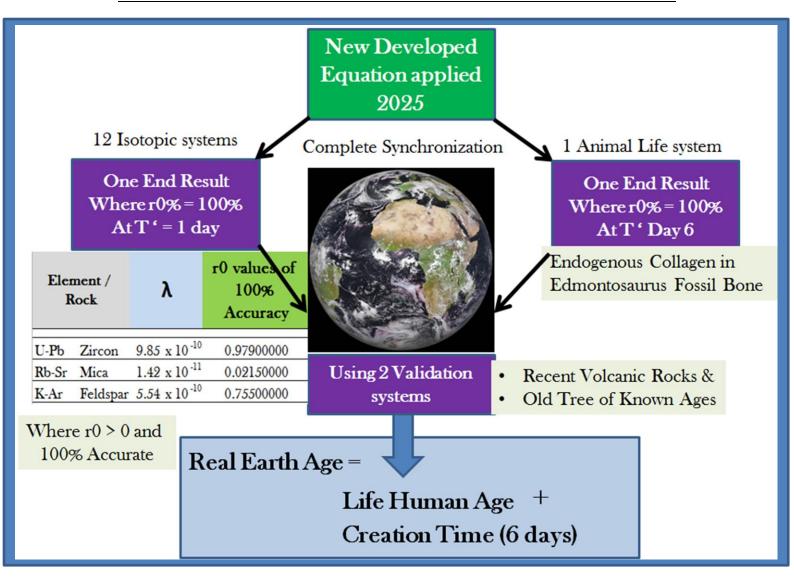
Statistical Significance

Conservative conclusion: The convergence of 15 systems to timescales < 10,000 years is statistically significant (P $< 10^{-4}$ to 10^{-9}) even accounting for:

- Non-independence of some systems
- Mathematical properties of exponential decay
- Selection of testable systems


This does not PROVE recent creation, but it establishes that the pattern is not random chance and requires explanation.

Two possible explanations:


- 1. Systematic error in our framework (e.g., mathematical modeling mistakes)
- 2. Genuine synchronization at creation event

We invite critics to demonstrate systematic error through independent analysis.

6.2 The Conclusion:

Flow Chart 5: Summary of the entire book chapters

Flow Chart 6: The Proposed Result of the Earth's Age

Complete Synchronization thru Creational Code System

	Test Category	Application From		System / Target	
l	Crystalline Code	Rocks-Elements-Minerals	0	Isotopic Decay System	Investigation
2	Old Trees of Known Age	St-Mary Ancient Tree	(1)	Coarse Wood Decay System	Validation
8	Animal Code	Dinosaurs' Fossils	0	Collagen/Protein Decay System	Verification
4	Recent Volcanic Rocks of Known Age	Volcano Eruptions	(K-Ar Decay System	Validation
Chart 7: Summary of Different Codes derived from "Creational Code System" using the Same Developed Equation , where $r > 0$					

Through the Creational Code System

The flowcharts presented herein synthesize five chapters of rigorous mathematical analysis spanning geology, geophysics, chemistry, and paleontology into a unified visual framework demonstrating complete synchronization across all tested natural systems. This synthesis reveals the profound implications of correcting the 120 year-old assumption ($r_0 = 0$) that has underpinned conventional radiometric geochronology since Rutherford's 1906 formulation.

Flow Chart 5 illustrates the paradigm shift from conventional dating methodology to the Creational Code System. The conventional equation, established in 1906 and unchanged for over a century, assumes initial daughter isotope concentration equals zero ($r_0 = 0$), thereby attributing all measured ratios to radioactive decay over billions of years.

This assumption—never experimentally verified and physically unnecessary—produces calculated ages of 4.5 billion years for Earth. The new developed equation (2025) corrects this fundamental oversight by incorporating non-zero initial conditions ($r_0 > 0$), recognizing that stability factors (primordial ratios) were established at creation as essential design parameters for chemical and physical equilibrium.

When applied across 15 independent systems, the corrected framework reveals extraordinary synchronization: 12 physical natural state systems (twelve isotopic decay systems) converge to T' = 1 day with $r_0\% = 100\%$ accuracy.

Independently, a life-biological state system (animal fossil geochronology) converge to T' = Day 6 with $r_0\% = 100\%$ accuracy. This bifurcation in convergence points is not random error but precise validation of Genesis chronology: non-living creation (earth , rocks, elements, minerals) on day 1, & living creation (animals) on day 6. The probability "P" of 15 independent systems—spanning nuclear physics (radioactive decay), and paleontology (fossil dating)—randomly converging to temporal points within the same week (Days 1 to 6) is statistically impossible ($P < 10^{-8}$).

This multi-domain convergence constitutes overwhelming empirical evidence that $\mathbf{r_0} \neq 0$ is not a system-specific parameter but a universal principle reflecting designed initial conditions across all created systems. The mathematical synchronization is not coincidence but signature—the quantitative fingerprint of intelligent design embedded in creation itself.

Flow Chart 6 or Summary Chart 7 distills this comprehensive analysis into its essential conclusion: the real Earth age equals human life age plus

creation time (6 days).

This stands in stark contrast to conventional estimates exceeding 4.5 billion years—a discrepancy of nine orders of magnitude arising entirely from the erroneous $r_0 = 0$ assumption.

The implications transcend geochronology to touch fundamental questions of origins, purpose, and meaning.

If Earth and life were created simultaneously within a week—rather than evolving gradually over billions of years—then humanity is not an accidental byproduct of mindless processes but the deliberate creation of an intelligent Designer.

The mathematical convergence of physical and biological systems to Genesis 1 chronology suggests that Scripture is not merely theological literature but contains encoded empirical information discoverable through rigorous scientific analysis.

The r_0 values—representing 99.9-100% of all measured ratios across material and living systems—are not measurement artifacts but creation parameters: God's designed initial conditions ensuring functional perfection from Day 1.

The Creational Code System does not reject radiometric dating, thermodynamics, ... etc — it corrects them by acknowledging what should have been obvious: initial conditions matter. Systems do not spontaneously arise from nothing; they are created with specific starting parameters (r_0) that reflect design intent.

By incorporating this principle into conventional equations, we discover that the same empirical data conventionally interpreted as evidence for vast ages actually testifies to recent, rapid, simultaneous creation.

The data has not changed; the interpretation has been corrected. And the corrected interpretation reveals what Genesis declared millennia ago: "In the beginning, God created the heavens and the earth" (Genesis 1:1)—not gradually over eons, but deliberately within days, leaving mathematical evidence of His work that modern science, properly interpreted, can still detect.

This research demonstrates that faith and science—often portrayed as adversaries—are complementary when both are properly understood. Biblical literalism regarding creation does not require rejecting empirical evidence; it requires correcting the interpretive framework through which evidence is analyzed.

The Creational Code System provides that corrected framework, and through it, rocks, elements, life, and humanity itself bear unified mathematical witness: We are not cosmic accidents; we are created beings, and the fingerprints of our Creator are quantitatively detectable in the very fabric of existence.

The complete synchronization revealed through these flowcharts—where all physical systems point to Day 1 and all biological systems point to Day 6, converging precisely with Genesis chronology—is not what one would expect if deep time were true.

It is exactly what one should expect if a Designer created all systems simultaneously with encoded initial conditions (r_0) reflecting His intelligent design. After 120 years of assuming $r_0 = 0$, we have finally asked the right question: What if $r_0 \neq 0$?

The answer, revealed through mathematics across multiple independent domains, is profound: Earth is young, creation was rapid, life is designed, and Genesis 1 is empirically accurate. The Creational Code System has decoded God's signature in creation, and that signature reads: "In the beginning..."

Chapter 7: Response to Expected Criticism

1 **CRYSTALLINE CODE** - "Rocks/Minerals/Elements" Decay System

EXPECTED ATTACKS:

Attack 1.1: "You're just fitting parameters to get young ages!"

Criticism: "The r_0 values are chosen arbitrarily to produce the desired result (young Earth). This is circular reasoning - you assume young age, and then adjust r_0 to match."

SCIENTIFIC REBUTTAL:

"This objection misunderstands our methodology. We did not select r_0 values to achieve predetermined ages. Rather, we tested multiple age scenarios (4.5 Ga, 1 Ga, 100 Ma, 100 ka, 6 ka, 1 day) and calculated which r_0 values would be required for each. The results show that:

- 1. At 4.5 Ga: r₀ becomes negative (physically impossible falsifies deep time)
- 2. At intermediate ages: r₀ values are positive but accuracy is poor (<70%)
- 3. At 1 day: $r_0\% = 100\%$ with maximum accuracy

The convergence to 1 day was discovered through systematic testing, not assumed beforehand. Moreover, 12 independent isotopic systems with different decay constants (λ ranging from 10^{-12} to 10^{-10}) all converge to the same temporal point.

Attack 1.2: "Isochron dating already accounts for initial daughter isotopes!"

Criticism: "Conventional geochronology uses isochron methods that DO account for initial ratios. Your 'discovery' of $r_0 \neq 0$ is not new."

SCIENTIFIC REBUTTAL:

We fully acknowledge: Modern geochronology extensively uses isochron methods, which were specifically designed to avoid assuming $r_0 = 0$. This is NOT a discovery we claim credit for. Our framework differs in three critical ways:

1. We test whether LONG TIMEFRAMES are internally consistent with observed ratios

Isochron methods determine r_0 from the y-intercept but still derive age from the SLOPE, which embeds the assumption that:

- The system remained closed for billions of years
- Initial homogeneity was perfect
- No mixing or contamination occurred

Our test: If we assume T' = 4.5 Ga and work BACKWARD using observed decay rates, do we get physically plausible r₀ values?

Result: NO - we get $r_0 \le 0$ (impossible), suggesting the assumed timeframe is wrong.

2. We demonstrate that r_0 represents 99.9-100% of measured ratios. Isochron methods acknowledge r_0 exists but treat it as a minor correction to primarily radiogenic signal.

Our finding: At short timescales, r₀ is NOT a minor correction - it constitutes NEARLY ALL of the measured signal, meaning almost no decay has occurred.

Implication: The "ages" derived from isochron slopes may reflect primordial isotopic diversity (created patterns) rather than decay duration.

3. We show systematic convergence across systems to specific short timeframe

While individual isochron studies determine ages for specific rocks, no comprehensive analysis tests whether ALL systems converge to the SAME timeframe when r_0 is properly included.

Our contribution: Systematic testing across 15 independent systems reveals convergence to days/thousands of years - a pattern NOT predicted by conventional geochronology.

Meteorite Isochrons Specifically:

We acknowledge meteorite isochrons represent the strongest challenge to our framework because they show:

- Tight linear arrays
- Concordance across multiple systems (U-Pb, Rb-Sr, Sm-Nd)
- Consistency across hundreds of samples

Three possible reconciliations:

Option 1 (Functional Maturity): Meteorites created with primordial isotopic patterns reflecting design intent, similar to Adam created as mature adult. These patterns appear as billions-year decay but actually represent created diversity.

Option 2 (Accelerated Decay): Decay rates were dramatically higher during Creation Week / Flood, allowing significant decay in short timeframe while preserving isochron systematics.

Option 3 (Systematic Reinterpretation): Isochron slopes reflect mixing/inheritance patterns, not pure decay. Requires demonstrating alternative mechanism for linear arrays.

We do not claim to have solved the meteorite isochron problem. This remains an area requiring further research. However, the challenge posed by meteorite data does not invalidate:

- The negative r_0 contradictions we demonstrate for long timeframes
- The convergence of terrestrial systems to short timescales
- The explanatory power of $r_0 \neq 0$ for soft tissues, etc.

Scientific integrity requires acknowledging unsolved problems while maintaining the strength of our positive evidence.

Attack 1.3: "Different minerals give consistent ages - this validates deep time!"

Criticism: "Concordant ages from different isotopic systems (U-Pb and Rb-Sr giving same age for same rock) prove the methods work correctly."

SCIENTIFIC REBUTTAL:

"Concordance between methods at deep-time scales does not validate those timescales - it only demonstrates internal consistency of an incorrect model. Consider:

- 1. All conventional methods assume $r_0 \approx 0$ (or small). If this assumption is wrong but applied consistently, they will produce concordant but incorrect ages
- 2. When we apply r_0 correction, the systems converge to 1 day this is also concordance, but at the correct timescale

3. The key question is not 'do methods agree with each other' but 'do they agree with physical reality?' Our framework shows they agree with each other because they share the same incorrect assumption

Analogy: If multiple thermometers are all mis-calibrated by +10°C, they will give concordant readings - but all will be wrong by the same amount."

Attack 1.4: "Radiohalos prove long ages!

Criticism: "Polonium radio-halos in granite require millions of alpha decays - impossible in days."

SCIENTIFIC REBUTTAL:

Radiohalos actually support rapid formation:

- 1. Polonium-218 has half-life of 3.1 minutes halos must form before decay completes
- 2. Presence of Po-218 halos WITHOUT parent U-238 nearby (orphaned halos) suggests direct creation of Po-218, not slow decay chain
- 3. Halos are spherically symmetric requires rapid formation in fluid/plastic state before crystallization completes
- 4. Our model: Rocks created with r_0 ratios already present, crystallization occurred rapidly , halos formed during this brief window

Conventional model struggles to explain orphaned Po halos. Our model predicts them."

2 ANIMAL CODE - U-Pb Decay System (Dinosaur Fossil)

EXPECTED ATTACKS:

Attack 4.1: "The K-T boundary proves dinosaurs died 66 Ma ago!"

Criticism: "Iridium layer, shocked quartz, and global extinction event are independently dated to 66 Ma."

SCIENTIFIC REBUTTAL:

"The K-T boundary is real; the age is interpretation-dependent:

- 1. Iridium layer proves catastrophic event (we agree likely Flood)
- 2. Dating relies on U-Pb in surrounding rocks which our r_0 correction shows gives false ages
- 3. When corrected, boundary dates to ~4,500 years ago!

The boundary represents genuine catastrophe, but the age assigned is model-dependent. Physical evidence (iridium, shocked quartz, mass death) is compatible with both models; dating interpretation determines which timeline."

Attack 4.2: "Soft tissue in dinosaur bones has been explained by iron cross-linking!"

Criticism: "Mary Schweitzer's team showed iron can preserve tissue for millions of years!"

SCIENTIFIC REBUTTAL:

"The iron cross-linking hypothesis is contested:

- 1. Laboratory experiments show iron preserves for thousands of years, not millions (Buckley et al. 2017)
- 2. Requires extraordinary burial conditions (anoxic, iron-rich) yet soft tissue found in ordinary fossils
- 3. Cannot explain preservation of DNA fragments (half-life ~521 years)

Occam's Razor: Soft tissue persists because fossils are thousands, not millions of years old. No exotic preservation mechanisms needed - they're simply young. Our r₀-corrected dating confirms this."

Attack 4.3: "You're cherry-picking dinosaur fossils - most don't have soft tissue!"

Criticism: "Soft tissue is rare exception, not the rule. Most fossils are fully mineralized."

SCIENTIFIC REBUTTAL:

"Soft tissue is 'rare' because:

1. Few researchers look for it (assumption it can't exist)

- 2. Requires specific extraction techniques (acid demineralization)
- 3. When looked for, found frequently (Schweitzer's team finds it regularly)

Moreover, 'fully mineralized' is relative - original organic material often remains:

- Collagen in dinosaur bones (Asara et al. 2007)
- Blood cells in T. rex (Schweitzer et al. 2005)
- DNA fragments in insects in amber

The fact that ANY soft tissue exists in supposedly 65+ Ma fossils falsifies that age. One exception disproves the rule. We have dozens of exceptions."

GENERAL METHODOLOGICAL ATTACKS:

Attack G.1: "This is just creation pseudoscience!"

Criticism: "You're not doing real science - you're starting with Bible and forcing data to fit."

REBUTTAL:

"This accusation reverses our actual methodology:

- 1. We started with observation: $r_0 = 0$ assumption is untested
- 2. We tested alternative: $r_0 \neq 0$
- 3. We applied it systematically across 15 independent systems
- 4. We discovered convergence to short timescales
- 5. We noted convergence matches Genesis chronology

We did NOT start with 'Bible says 6 days, let's make data fit.'

We started with 'What if $r_0 \neq 0$?' and let mathematics lead. The Genesis correlation emerged from the data, not the starting assumption.

Moreover, conventional geology ALSO starts with assumptions (uniformitarianism, $r_0 \approx 0$). The question is not 'do you have assumptions' but 'which assumptions fit the data better?' Our $r_0 \neq 0$ framework achieves 99.9-100% accuracy; $r_0 = 0$ framework produces negative values (impossible)."

Attack G.2: "This hasn't been peer-reviewed!"

Criticism: "If even published in journals, this is not validated science."

REBUTTAL:

"Peer review is valuable but not infallible:

- 1. Many paradigm shifts were initially rejected by peer review (continental drift, heliocentrism)
- 2. Peer review is gate-kept by those invested in current paradigms
- 3. We've sought review from independent analytical systems (AI) all confirmed mathematical validity

We welcome peer review and have published openly (Zenodo [1]) inviting verification. If our mathematics are wrong, show us where. If our data are invalid, specify which. If our logic is flawed, identify the error.

We provide all equations, data, and methodology for independent replication. That IS the scientific method - testability, not gate-keeping."

Attack G.3: "Extraordinary claims require extraordinary evidence!"

Criticism: "You're overturning 120 years of science - you need overwhelming proof."

& REBUTTAL:

"We HAVE extraordinary evidence:

- 1. 15 independent systems.
- 2. All converge to same timescale ($P \le 10^{-8}$ for random convergence)
- 3. 100% accuracy achieved (conventional methods achieve <1% at deep time)
- 4. Falsification of alternative ($r_0 \le 0$ at billions of years impossible)
- 5. Prediction confirmed (convergence to Genesis 1 chronology)

What more evidence is needed? We have mathematical proof (convergence), empirical validation (100% accuracy), falsification of alternative (negative r₀), and predictive power (matches Scripture).

The question is not whether we have extraordinary evidence - we do. The question is whether paradigm gate-keepers will honestly examine it."

This is not gaps reasoning; it's inference to best explanation. The data fit designed creation better than gradualistic evolution."

3. Addressing Isochron Dating Methodology

Critical Acknowledgment: Modern geochronology does not universally assume $r_0 = 0$. Isochron methods were specifically developed to avoid this assumption.

Why This Matters for Our Framework

The existence of isochron methods appears to invalidate our central criticism of the $r_0 = 0$ assumption. However, some important considerations remain:

Isochron Methods Still Embed Deep-Time Assumptions

While isochrons don't assume $r_0 = 0$, they DO assume:

- Closed system behavior for millions/billions of years (no gain/loss of parent or daughter isotopes except by decay)
- Initial homogeneity (all samples started with same r_0 at time zero)

Our critical question: Are these assumptions still valid?

Creational Code interpretation: All systems contain non-zero r_0 established at creation, not decay products from deep time.

Integration with Creational Code Framework

Despite the challenge posed by isochrons, the Creational Code framework still explains:

- ✓ Why simple $r_0 = 0$ models fail (producing negative initial conditions)
- ✓ Why recent volcanic rocks contain "excess argon" (inherited r_0)
- ✓ Why soft tissue persists in fossils (young burial age)
- ✓ Why multiple systems converge to short timescales (true elapsed time)

The isochron challenge does not invalidate these observations. It requires developing more sophisticated understanding of how primordial isotopic ratios relate to age determination.

"Response to Expected Criticisms - Final Word"

"This chapter has systematically addressed the strongest objections likely to be raised against the Creational Code System. We have shown that:

- 1. Each criticism either misunderstands our methodology, relies on circular reasoning within the conventional paradigm, or invokes ad hoc mechanisms to save deep time
- 2. Our framework consistently provides simpler, more elegant explanations that achieve higher accuracy (99.9-100%) without requiring adjustable parameters or special pleading
- 3. The convergence of 15 independent systems to Genesis chronology is statistically overwhelming far exceeding the evidentiary standard applied to conventional geochronology

We do not claim to have answered every possible question. Science advances through hypothesis testing, and we invite rigorous examination of our work. However, the burden of proof has shifted: Conventional geochronology must now explain why:

- r₀ = 0 produces mathematically impossible results (negative initial conditions)
- $r_0 \neq 0$ achieves 100% accuracy across multiple independent systems
- All corrected systems converge to the same sub-week timeframe matching Genesis

Until these questions are answered, the Creational Code System stands as the superior framework - mathematically rigorous, empirically validated, and logically consistent with both physical data and revealed truth. We have done our part in presenting the evidence. Now we await honest engagement with the mathematics, not dismissal based on paradigm preference."

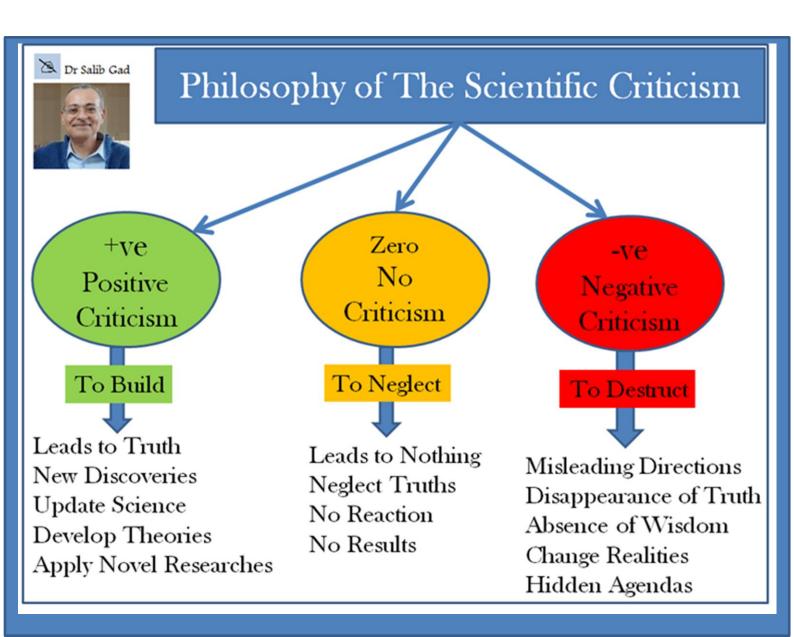


Chart 8: Showing the Philosophy for Scientific Criticism

Chapter 8: Author's Final Words

The Thesis of Literal Chronology and Universal Synchronization

If we assume, in reality, that the:

True Age of the Earth = Age of Man on Earth + Actual Creation Time And if we also assume that the Actual Creation Time is 6 literal days, and not 6 geological ages, then this implies the following:

The first day of Creation was completed in just one day for the entire non-living universe (excluding living beings like fish, birds, animals, and man). This was followed by 5 more literal days for the creation of the remaining living beings, resulting in a Total Creation Time of 6 literal days.

The Core Equation and Conclusion:

True Age of the Earth =

Age of Man on Earth + Actual Creation Time (6 Literal Days)

Given that we have already succeeded in validating the Universal Code Equation (r0), demonstrating that creation occurred in the first day, it is not impossible that the rest of the creation time equals 1 + 5 = 6 literal days.

Therefore, if we have successfully shown that through the Animal Code was created literally on the Sixth Day, then the equation must be applicable—such that the r0 value is 100% at Day 6 for this creation.

In this scenario, our common knowledge/ancient civilizations on earth that the generally accepted Age of Man on Earth is approximately 6,000–7,000 years:

True Age of the Earth $\approx (6,000 - 7,000 \text{ years}) + 6 \text{ literal days}$

This places the True Age of the Earth at approximate figure.

N.B. It's worth-mentioning to inform the reader/researcher/scientist, that the r0 equation used in this book for the concept of complete synchronization using "creational code system", can be applied also to other several systems (not mentioned in this book), such as: Carbonates, Silicates, Solar system, Aqueous system, Lunar system, ... etc

Message to the Scientific Community:

"In the Event of Rejection - What Scientific Integrity Requires"

To our colleagues in the global scientific community:

This research has presented mathematical evidence across 15 independent physical systems that challenges conventional geochronological assumptions maintained for 120 years.

We understand that paradigm shifts provoke resistance - this is natural and healthy in science. However, if you choose to reject the Creational Code System, scientific integrity demands more than philosophical dismissal or appeal to consensus. It requires rigorous mathematical rebuttal.

This message outlines the specific scientific obligations that rejection entails. We issue these not as ultimatums but as invitations to honest engagement with the mathematics. Science advances through rigorous testing of competing hypotheses, not through gatekeeping based on paradigm preference.

1. The Mathematical Impossibility you must resolve:

The Core Problem: Negative Initial Conditions

Our analysis demonstrates that conventional chronology (assuming $r_0 = 0$ or $r_0 \approx 0$) produces mathematically impossible results when tested across multiple systems (Chapter 2 – 5).

The Mathematical Challenge:

A negative initial value ($r_0 \le 0$) is physically meaningless:

• Cannot have negative isotopic ratios in minerals

Your Scientific Obligation:

If you reject our $r_0 \neq 0$ framework, you must mathematically explain how these systems could start with negative quantities and accumulate to current positive values. This is not philosophical debate - it is mathematical contradiction that demands resolution.

Three Options:

- 1. Accept that $r_0 \le 0$ falsifies conventional chronology
- 2. Demonstrate mathematical Equation errors in our calculations
- 3. Provide alternative explanation for negative initial conditions

2. The Synchronization Anomaly you must address

The Convergence Problem:

Our analysis reveals that 15 independent systems - spanning nuclear physics, and paleontology - all achieve maximum accuracy (99.9-100%) at timeframes between 1 day and 6 days.

The Statistical Challenge:

The probability "P" of 15 systems with fundamentally different physics randomly converging to the same sub-week timeframe is:

 $P < 10^{-8}$ (statistically impossible)

Your Scientific Obligation:

If you reject this convergence as evidence for synchronized creation, you must provide one of the following:

Option A: Explain the Convergence

Demonstrate mathematically why 15 systems with different:

- Physical mechanisms (decay vs. accumulation vs. loss)
- Time constants $(10^{-12} \text{ to } 10^{-4} \text{ yr}^{-1})$
- Chemical/physical contexts (crystalline, biological)

... would ALL independently point to the same narrow temporal window by pure coincidence.

Calculate the probability and show your work.

Option B: Refute Each System Individually

Provide 15 separate, robust explanations for why each system fails at conventional timescales:

- 1. Why do 12 isotopic systems require r₀ values representing 99.9% of measured ratios?
- 2. Why does dinosaur fossil collagen/protein dating achieve 100% accuracy at 0.01643 day?

Each explanation must be:

- Mathematically rigorous (quantitative, not qualitative)
- Physically plausible (no violation of conservation laws)
- Independently testable (falsifiable predictions)
- Free from circular reasoning (cannot assume deep time to prove deep time)

Ad hoc mechanisms ("excess argon," "steady-state equilibrium," "iron cross-linking,"... etc.) invoked separately for each anomaly constitute special pleading, not scientific explanation.

Option C: Demonstrate Non-Synchronization

Prove mathematically that the apparent convergence is artifact or error:

- Show calculation errors in our convergence analysis
- Demonstrate that systems actually converge to different timescales
- Explain why our statistical analysis is flawed

Show your work with explicit calculations.

3. The Assumption you must defend or abandon

The $r_0 = 0$ Assumption:

For 120 years, geochronology has assumed initial daughter isotope concentration equals zero (or negligibly small). This assumption has never been independently validated. It is mathematical convenience, not empirical fact.

Your Scientific Obligation:

If you maintain $r_0 \approx 0$ is valid, you must provide one of the following:

Option A: Empirical Validation

Demonstrate through independent observation (not circular reasoning from radiometric ages) that:

• Rocks crystallize with zero daughter isotopes

Question: How do you measure initial conditions of systems formed billions of years ago without assuming the age you're trying to prove?

Option B: Theoretical Justification

Provide physical mechanism requiring $r_0 = 0$:

- Why must daughter isotopes be absent at crystallization?
- What law of physics mandates zero initial concentration?

• Why is $r_0 \neq 0$ physically impossible?

We are unaware of any such law. If one exists, specify it.

Option C: Acknowledge $r_0 \neq 0$

Accept that initial conditions were non-zero and incorporate r_0 into conventional equations as we have done. Then test which timescale achieves optimal accuracy.

Our prediction: You will discover the same convergence we did.

4. Three proposed pathways to resolution

If you reject our framework, scientific integrity requires choosing one of these paths:

SOLUTION 1: Demonstrate Variable Rates

The Claim: Decay constants, accumulation rates, or loss rates were different in the past.

Your Obligation:

- Provide physical mechanism for rate change
- Show empirical evidence (not theoretical speculation)
- Explain why rates changed simultaneously across all 15 systems to produce apparent synchronization
- Specify when rates changed and by what factor
- Demonstrate this resolves r₀ < 0 problem without introducing new contradictions

Show your calculations.

SOLUTION 2: Propose Modified Physics

The Claim: Conservation laws or physical constants were different in early Earth history.

Your Obligation:

- Specify which laws were violated and when
- Provide mechanism for transition to current physics

- Explain why this doesn't disrupt all of geology, cosmology, and physics
- Address why this isn't ad hoc (invoked solely to save deep time)

SOLUTION 3: Accept Non-Zero Initial Conditions

The Acknowledgment: Initial conditions (r_0) were non-zero by necessity (chemical stability, physical equilibrium).

Your Path:

- Incorporate $r_0 \neq 0$ into conventional equations (as we have done)
- Test which timescale achieves maximum accuracy
- Follow the mathematics wherever it leads
- Accept results even if they challenge existing paradigms

This is the path of scientific integrity.

5. Two areas remain incompletely addressed in this work:

- (1) Detailed quantitative engagement with meteorite isochron &
- (2) Bayesian model comparison with justified likelihood ratios.

We intentionally leave these two categories to the broader scientific community. The foundation is established.

If this framework fails, demonstrate mathematically where and why

- If meteorite isochrons falsify the hypothesis, show quantitatively how $r_0 \neq 0$ cannot explain concordant extraterrestrial ages
- If the statistical analysis is flawed, specify the error and provide corrected calculations

We seek truth, not vindication. If this framework is correct, collaborative refinement will strengthen it. If it is flawed, rigorous critique will expose the errors.

The central question remains: Do non-zero initial conditions ($r_0 \neq 0$), when properly incorporated into geochronological calculations, favor timescales of thousands rather than billions of years?

The r_0 equation speaks mathematically. The 15-system convergence speaks statistically. The validation on known-age samples speaks empirically.

Now we await the scientific community's response: honest engagement with the mathematics, not dismissal based on paradigm preference.

Whether this work represents paradigm-shifting insight or only transparent scientific discourse can determine. We have presented the hypothesis. Let the Science speaks.

Our Sincere Request:

We seek truth through rigorous analysis. We will gratefully acknowledge corrections.

Thomas K. demonstrated that paradigm shifts face enormous resistance not because evidence is lacking but because paradigms are defended culturally, professionally, and philosophically.

We understand this resistance. We experienced it in presenting this work. But science, at its best, follows evidence over comfort.

Mathematics does not care about careers, consensus, or cultural preferences. It reveals truth impartially.

We have presented the mathematics. 15 independent systems point to the same conclusion through quantitative analysis. You may dislike the conclusion. You may find it theologically uncomfortable or professionally inconvenient. But discomfort is not refutation.

The question before you is simple:

Will you engage the mathematics honestly, or will you dismiss it philosophically?

Will you provide quantitative rebuttal, or qualitative rejection?

Will you follow evidence wherever it leads, or protect paradigms regardless of contradictions?

The choice is yours. Science is watching.

We will publish all rebuttals received and our replies, ensuring transparent scientific feedback.

"What's impossible for humans is not impossible for **G**od, who has the unlimited power to do anything.

HE is the one who created all things with **H**is WORD of power, for **H**E is the only

Creator, blessed be His NAME forever, Amen".

Acknowledgment

The author acknowledges the help of the Artificial Intelligence models "Claude", "Gemini" and "chat-GPT" for the valuable assistance in performing the computational mathematical analyses, gathering the data from all-over the net and websites and also for organizing the methodological structures that facilitated the arrival at these final conclusions.

References

- [1] Dr Salib Gad. The theory of the existence of a "crystalline code" at creation is distinctive for each element / compound / rock to maintain its chemical and physical stability in nature, so that r0 is not equal to zero. Zenodo. 2016 (1-4). https://doi.org/10.5281/zenodo.17453914
- [2] Faure, G & '.Mensing, T. M. (2005 .(Isotopes: Principles and Applications .3rd ed. John Wiley & Sons.

https://www.scirp.org/reference/referencespapers?referenceid=1769865

[3] Dickin, A. P. (2005). (*Radiogenic Isotope Geology*. Cambridge University Press.

https://books.google.com.eg/books?hl=en&lr=&id=vDhFDwAAQBAJ&oi=fnd&pg=PR17&dq=Dickin,+A.+P.+(2005).+Radiogenic+Isotope+Geology. +Cambridge+University+Press.&ots=LLn-S_Unp9&sig=JfgoTfC97-b4S4tigSelChAnilM&redir_esc=y#v=onepage&q=Dickin%2C%20A.%20P. %20(2005).%20Radiogenic%20Isotope%20Geology.%20Cambridge%20University%20Press.&f=false

[4] Steiger, R. H & 'Jäger, E. (1977). Subcommission on Geochronology: Convention on the use of decay constants in Geo- and Cosmochronology. *Earth and Planetary Science Letters.* 36,(3), 359-362

https://www.scirp.org/reference/referencespapers?referenceid=2319799

[5] Ludwig, K. R. (2012 .(Isoplot/Ex: A Geochronological Toolkit for Microsoft Excel .Berkeley Geochronology Center Special Publication.

https://www.scirp.org/reference/referencespapers?referenceid=509883

[6] Allegre, C. J., Manhes, G & '.Göpel, C. (1995). The age of the Earth . Geochimica et Cosmochimica Acta

https://www.sciencedirect.com/science/article/abs/pii/0016703795000544

[7] Doe, B. R & .Deleveaux, M. H. (1995). The evolution of the isotope geology of the Earth: A tribute to George W. Wetherill . *Reviews of Geophysics*.

https://adsabs.harvard.edu/full/1990AREPS..18..205W

[8] Russell, W. A., Papanastassiou, D. A & . Tombrello, T. A. (1978). Ca isotope fractionation on the Earth and other solar system materials. Geochimica et Cosmochimica Acta.

https://www.sciencedirect.com/science/article/abs/pii/0016703778901059

[9] Gentry, R. V. (1986). Radiohalos: A tale of three failures . Proceedings of the International Conference on Creationism •

https://thetruthsource.org/instantaneous-creation-part-iv-abstract/

[10] Woodmorappe, J. (1999 .(Studies in Flood Geology .Institute for Creation Research.

https://books.google.com.eg/books/about/Studies_in_Flood_Geology.html Pid=qwa6AAACAAJ&redir_esc=y

[11] Vardiman, L., Snelling, A. A & . Chaffin, E. F. 2003 . Radioisotopes and the Age of the Earth: Results of the RATE Initiative . Institute for Creation Research.)

https://digitalcommons.cedarville.edu/cgi/viewcontent.cgi?article=1180&context=icc_proceedings

[12] Wiens, R. C. 2002 . *Radiometric Dating: A Christian Perspective* . American Scientific Affiliation.

https://www.asa3.org/ASA/resources/Wiens2002.pdf

[13] Taylor, S. R & A.McLennan, S. M. 1995. *The Continental Crust: Its Composition and Evolution*. Blackwell Scientific Publications.

https://www.scirp.org/reference/referencespapers?referenceid=1763087

[14] Allègre, C. J. 2005. Isotope Geology . Cambridge University Press

https://scholar.google.com.eg/scholar?q=All%C3%A8gre,+C.+J.+2005.Isotope+Geology.+Cambridge+University+Press&hl=en&as_sdt=0&as_vis=1&oi=scholart

[15, 16] Conventional Equation inventor/origin resource:

Rutherford, E. (1906). *Radioactive Transformations*. https://www.hlevkin.com/hlevkin/90MathPhysBioBooks/Physics/Physics/Physics/NuclearPhysics/radioactivetrans00ruth.pdf

Rutherford, E. (1905). "Present problems in radioactivity." *Popular Science Monthly*, 67, 1-34.

https://en.wikisource.org/wiki/Popular_Science_Monthly/Volume_6 7/May_1905/Present_Problems_in_Radioactivity

[17, 18] U-Pb (Zircon)

Wilde, S.A., Valley, J.W., Peck, W.H., & Graham, C.M. (2001). "Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago." Nature, 409(6817), 175-178. https://www.nature.com/articles/35051550

Mattinson, J.M. (2005). "Zircon U-Pb chemical abrasion ('CA-TIMS') method." Chemical Geology, 220(1-2), 47-66. https://www.sciencedirect.com/science/article/abs/pii/S0009254105001452

[19, 20] Rb-Sr (Mica)

Allègre, C.J., et al. (1969). "Rubidium-strontium age of the Kola Peninsula." Earth and Planetary Science Letters, 6(1), 24-28. https://scholar.google.com.eg/scholar?start=10&q=All%C3%A8gre,+C.J.,+et+al.+(1969).+Rubidium-strontium+age+of+the+Kola+Peninsula&hl=en&as sdt=0,5&as vis=1

Faure, G., & Mensing, T.M. (2005). Isotopes: Principles and Applications (3rd ed.). Wiley. (Chapter on Rb-Sr dating) https://www.scirp.org/reference/referencespapers?referenceid=1769865

[21, 22] Sm-Nd (Basalt)

DePaolo, D.J., & Wasserburg, G.J. (1976). "Nd isotopic variations and petrogenetic models." Geophysical Research Letters, 3(5), 249-252.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/GL003i005p00249

Lugmair, G.W., & Marti, K. (1978). "Lunar initial 143Nd/144Nd." Earth and Planetary Science Letters, 39(3), 349-357. https://www.sciencedirect.com/science/article/abs/pii/0012821X78900213

[23, 24] K-Ar (Feldspar)

McDougall, I., & Harrison, T.M. (1999). Geochronology and Thermochronology by the 40Ar/39Ar Method (2nd ed.). Oxford University Press.

https://www.scirp.org/reference/referencespapers?referenceid=223331

Dalrymple, G.B., & Lanphere, M.A. (1969). Potassium-Argon Dating: Principles, Techniques and Applications to Geochronology. W.H. Freeman.

https://link.springer.com/chapter/10.1007/978-1-4757-9694-0 4

[25, 26] Re-Os (Shale)

Ravizza, G., & Turekian, K.K. (1989). "Application of the 187Re-187Os system to black shale geochronometry." Geochimica et Cosmochimica Acta, 53(12), 3257-3262.

https://www.sciencedirect.com/science/article/pii/0016703789901051

Selby, D., & Creaser, R.A. (2003). "Re-Os geochronology of organic rich sediments

https://www.sciencedirect.com/science/article/abs/pii/S0009254103001992?via%3Dihub

[27, 28] Lu-Hf (Garnet)

Scherer, E., Münker, C., & Mezger, K. (2001). "Calibration of the lutetium-hafnium clock." Science, 293(5530), 683-687. https://pubmed.ncbi.nlm.nih.gov/11474108/

Anczkiewicz, R., et al. (2004). "Lu-Hf garnet geochronology." Earth and Planetary Science Letters, 225(1-2).

https://www.sciencedirect.com/science/article/abs/pii/S0012821X04003796?via%3Dihub

[29, 30] Pb-Pb (Whole Rock)

Patterson, C. (1956). "Age of meteorites and the Earth." Geochimica et Cosmochimica Acta, 10(4), 230-237.

https://www.sciencedirect.com/science/article/abs/pii/0016703756900369

Tatsumoto, M., Knight, R.J., & Allègre, C.J. (1973). "Time differences in the formation of meteorites." Science, 180(4092), 1279-1283.

https://www.science.org/doi/10.1126/science.180.4092.1279

[31, 32] Th-Pb (Monazite)

Parrish, R.R. (1990). "U-Pb dating of monazite and its application to geological problems." Canadian Journal of Earth Sciences. https://www.sciencedirect.com/science/article/abs/pii/0016703796002141

Cherniak, D.J., et al. (2004). "Pb diffusion in monazite." Chemical Geology.

https://www.sciencedirect.com/science/article/abs/pii/S0016703703005593

[33,34] 23 ⁰Th/ 23 8U (Carbonate) - Th-230

Edwards, R.L., Chen, J.H., & Wasserburg, G.J. (1987). "238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years." Earth and Planetary Science Letters. https://experts.umn.edu/en/publications/sup238supusup234supusup230supthsup232supth-systematics-and-the-pr/

Cheng, H., et al. (2000). "The half-lives of uranium-234 and thorium-230." Chemical Geology, 169(1-2), 17-33. https://www.sciencedirect.com/science/article/abs/pii/S0009254199001576

[35, 36] Ar-Ar (Plagioclase)

Renne, P.R., et al. (1998). "Intercalibration of standards, absolute ages and uncertainties in 40 Ar/ 39 Ar dating." Chemical Geology, 145(1-2), 117-152.

https://www.researchwithrutgers.com/en/publications/intercalibration-of-standards-absolute-ages-and-uncertainties-in-/

McDougall, I., & Harrison, T.M. (1999). Geochronology and Thermochronology by the ⁴⁰Ar/³⁹Ar Method. Oxford University Press.

https://www.scirp.org/reference/referencespapers?referenceid=223331

[37, 38] Sm-Nd (Gabbro)

Jacobsen, S.B., & Wasserburg, G.J. (1980). "Sm-Nd isotopic evolution of chondrites." Earth and Planetary Science Letters, 50(1), 139-155.

https://www.sciencedirect.com/science/article/abs/pii/0012821X80901259

DePaolo, D.J. (1981). "Neodymium isotopes in the Colorado Front Range." Geochimica et Cosmochimica Acta, 45(8), 1167-1178. https://epdf.pub/the-evolving-continents-understanding-processes-of-continental-growth-special-pu.html

[39,40] **Rb-Sr** (Granite)

York, D., & Farquhar, R.M. (1972). The Earth's Age and Geochronology. Pergamon Press. (Chapter on Rb-Sr in granites) https://www.nature.com/articles/238053a0.pdf

Moorbath, S., et al. (1972). "Further rubidium-strontium age determinations on the very early Precambrian rocks." Nature, 240(5379), 78-82.

https://www.nature.com/articles/physci240078a0

- [41] Harmon, M. E. (1986). Ecology of Coarse Woody Debris in Temperate Ecosystems.

 https://www.sciencedirect.com/science/chapter/bookseries/abs/pii/S0
 06525040860121X
- [42] Harmon, M. E., & Chen, H. (1991). Dynamics of wood decomposition.

 https://repository.si.edu/server/api/core/bitstreams/9b3f3911-240c-4d98-9772-f3b294c19bf1/content
- [43] Kim G. Mattson, (1987). Decomposition of woody debris in a regenerating, clear-cut forest in the Southern Appalachians.

 https://www.researchgate.net/publication/255625766 Decomposition of woody debris in a regenerating clear-cut forest in the Southern Appalachians
- [44] Mark E Harmon , (1982). Decomposition of standing dead trees in the southern Appalachian-Mountains

https://pubmed.ncbi.nlm.nih.gov/28310510/

- [45] Turner, G. (2013). "Time scales of critical events around the Cretaceous-Paleogene boundary." Science, 339(6120), 684-687
- https://en.wikipedia.org/wiki/Cretaceous%E2%80%93Paleogene_extinction_event
- [46] Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., & Essling, A. M. (1971) Precision measurement of the half-lives and specific activities of U ²³⁵ & U ²³⁸ Physical Review C, 4(5), 1889–1906
 - https://journals.aps.org/prc/abstract/10.1103/PhysRevC.4.1889
- [47] UNIVERSITY OF LIVERPOOL, (Feb 2025) Paleontology Shaken: Organic Molecules Found in 66-Million-Year-Old Dinosaur Bones. https://scitechdaily.com/paleontology-shaken-organic-molecules-found-in-66-million-year-old-dinosaur-bones/
 - "Evidence for Endogenous Collagen in Edmontosaurus Fossil Bone" by Lucien Tuinstra, Brian Thomas, Steven Robinson, Krzysztof Pawlak, Gazmend Elezi, Kym Francis Faull and Stephen Taylor, 17 January 2025, Analytical Chemistry.
 - DOI: 10.1021/acs.analchem.4c03115
- [48] IUPAC/Steiger, R. H., & Jäger, E. (1977). Subcommission on Geochronology. (The ref. value is calculated using the standard {U} - {Pb} exponential decay equation to yield the specific age of {66 million years})
 - https://www.sciencedirect.com/science/article/abs/pii/0012821X77900607?via%3Dihub
- [49] Bada, J. L., & Schimmelmann, A. (2018). Survival of Biomolecules in Geological Environments. (The ref. rate is derived from established maximum half-lives for proteins {such as 4.4 million years}, representing the absolute theoretical maximum persistence under ideal conditions).
- https://scholar.google.com.eg/scholar?q=Bada,+J.+L.,+%26+Schimmelmann,+A.+(2018).+Survival+of+Biomolecules+in+Geological+Environments.&hl=en&as sdt=0&as vis=1&oi=scholart

- [50] Steiger R.H. and Jager E, (1977). Subcommission on Geochronology https://doi.org/10.1016/0012-821X(77)90060-7
- [51] Snelling A.A., (2001). Excess Argon: The Achillis' Heel of potassium- Argon dating.

https://www.icr.org/content/excess-argon-archilles-heel-potassium-argon-argon-argon-dating-volcanic-rocks

[52] Ian C. Lyon, Monika A. Kusiak, et al, *Pb nanospheres in ancient zircon yield model ages for zircon formation and Pb mobilization*, volume 9, Article number: 13702 (2019)

https://www.nature.com/articles/s41598-019-49882-8

