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Summary 
 

SARS-CoV-2, a novel coronavirus, is the agent responsible for the COVID-19 pandemic 
and is a major public health concern nowadays. The rapid and global spread of this 
coronavirus leads to an increase in hospitalizations and thousands of deaths in many 
countries. To date, great efforts have been made worldwide for the efficient management 
of this crisis, but there is still no effective and specific treatment for COVID-19.  The 
pandemic of the new coronavirus infection (COVID-19) caused by the SARS-CoV-2 virus 
has spread all over the world. The large amount of information that appears every day 
requires comprehension and systematization. The immunological aspects of the virus-
host interaction are the core issues in the effective treatment and prevention of COVID-
19’ development. 

The review analyzes the known pathways of the viral invasion and evasion, the 
mechanisms of the cytokine storm, endothelial damage, and hypercoagulability 
associated with SARS-CoV-2 infection. Clinical data from previous SARS and MERS 
epidemics is discussed here. We also address the therapeutic approaches based on the 
basic knowledge of immune response and the blood cells’ immune functions, as well as 
the ways to reduce their hyperactivation. The use of interferon therapy, anti-inflammatory 
therapy, anti-cytokine therapy, neutralizing antibodies, convalescent plasma, and 
mesenchymal stem cells, as well as prophylactic vaccines, is discussed. 

Keywords: COVID-19; SARS-CoV-2; coronavirus infection; pneumonia; lung damage; 
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Introduction 
 
The pandemic of the new coronavirus infection (COVID-19) caused by the beta 
coronavirus SARS-CoV-2 has caused high morbidity and mortality worldwide [1]. The 
severity of COVID-19 ranges from asymptomatic to fatal pneumonitis [2]. SARS-CoV-2 is 
closely related to SARS (retrospectively named SARS-CoV-1) and the Middle East 
respiratory syndrome MERS-CoV, which caused zoonotic epidemics and localized 
outbreaks in 2003 and 2012, respectively [3–5]. Consequently, it is important to learn the 
lessons from the two previous coronavirus epidemics. Although SARS-CoV-2 is not 
nearly as deadly as SARS-CoV-1 or MERS-CoV [6], the rapid spread of the current 
infection has led to disastrous consequences for health systems around the world. 

Numerous studies have shown that the penetration of the SARS-CoV-2 coronavirus into 
the cell is a result of interaction between the receptor-binding domain of the viral spike 
(S) protein and the angiotensin-converting enzyme receptor 2 (ACE2). The ACE2 is 
present on non-immune cells (respiratory and intestinal epithelial cells, endothelial cells, 
renal tubule cells, and brain neurons), as well as on immune cells (alveolar 
monocytes/macrophages) [7–9]. Binding of the viral S protein to the ACE2 receptor leads 
to the suppression of the latter followed by lung damage [10]. A better understanding of 
these immunological processes will allow to develop therapeutic and preventive 
measures against COVID-19 [11]. 

Natural history of COVID-19 

The clinical consequences of SARS-CoV-2 infection have been extremely variable, 
ranging from a benign course to rapidly progressive disease leading to death within 2–3 
weeks of symptom onset. While many infected individuals are asymptomatic8,9 or only 
experience upper respiratory symptoms, others develop interstitial pneumonia, which can 
quickly progress to respiratory failure and acute respiratory distress syndrome (ARDS), 
requiring mechanical ventilation and admission to an intensive care unit (ICU) and 
possibly culminating in multiorgan failure.10–12 In addition, asymptomatic patients have 
significantly longer viral shedding periods, which has implications for disease spread.  

Patients with severe COVID-19 can worsen rapidly. Rapid progression to respiratory 
failure was reported in the first case series published,14 with an average time from onset 
of symptoms of 1–2 weeks for ARDS requiring assisted ventilation in an ICU, 8 days for 
dyspnea, 9 days for ARDS, and 10.5–14.5 days for ICU admission/intubation. The main 
cause of death was respiratory failure (85%), associated with shock in a third of 
cases.15 Mortality rates, however, vary greatly from country to country for a variety of 
reasons, both general, such as healthcare infrastructure and testing availability, and 
specific, such as risk or protective factors and racial heterogeneity reflected in different 
genetic susceptibility backgrounds, and individual immune response factors. 

 

Mechanisms of the immune response to SARS-CoV-2 

Innate immune response 

The innate immune response serves as the first line of antiviral defense. There is a so-
called mechanism of evasion, which allows them to evade the immune response, in 
coronaviruses. When the pattern-recognition receptors of immune cells interact with the 
viral RNA, the secretion of cytokines is triggered through signaling cascades. Among the 
cytokines, the most important for antiviral protection are type I and III interferons (IFN-I 
and IFN-III); in addition, other cytokines — pro-inflammatory tumor necrosis factor alpha 
(TNF-α), interleukins IL-1, IL-6, and IL-18 — are also released. Together, they induce an 
antiviral mechanism in target cells and potentiate the adaptive immune response. If it is 
initiated at an early stage and is powerful enough, IFN-I will be able to effectively limit the 
development of coronavirus infection and lead to pathogen elimination and patient 
recovery [12, 13]. Studies [14–17] have shown that SARS-CoV-2 is more sensitive to 
IFN-I and IFN-III than SARS-CoV-1 in laboratory conditions. 

Cytokines represent a major barrier to viral infection; to avoid this barrier, coronaviruses 
have evolved mechanisms able to inhibit the induction and signaling of IFN-I. The SARS-
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CoV-2 virus suppresses the induction of intracellular interferon, while the virus is 
sensitive to exogenous IFN-I. Numerous studies [14, 18–22] have shown the ability of 
coronaviruses to inhibit interferon production in vitro and in vivo. In real clinical practice, 
patients with severe COVID-19 show a significant decrease in the effect of IFN-I 
compared to patients with mild to moderate cases of COVID-19 [23]. 

The existence of the pathways, especially that of IFN-I, that allow pathogenic 
coronaviruses to evade the immune response suggests a role for dysregulation of the 
IFN-I response in the pathogenesis of COVID-19. Pathogenic coronaviruses not only 
block interferon signaling but also participate in other inflammatory pathways. For 
example, the non-structural proteins NSP9 and NSP10 of SARS-CoV-2 can induce the 
production of IL-6 and IL-8 [24]. 

Innate lymphoid cells are cytotoxic natural killer (NK) cells located in the lungs and able 
to prevent pathogens from entering the tissue. These cells do not express the ACE2 
receptor and are, therefore, unlikely to be directly infected with SARS-CoV-2 [25]. 
Information of the number of NK cells in patients with COVID-19 is not consistent; yet 
these cells are assumed to play a role in the cytokine release syndrome [26, 27]. Studies 
[28, 29] indicate that in severe SARS-CoV-2 infections, the number of NK cells is 
reduced. After successful recovery from COVID-19, the NK cell number is restored to 
normal levels. Some reports [27, 30] indicate either a disturbance in the NK cell 
maturation or migration of mature circulating NK cells into the lungs or other peripheral 
tissues in patients infected with SARS-CoV-2. 

An ex vivo study of NK cells from the peripheral blood of patients with COVID-19 
revealed a decrease in the expression of CD107a, caspase Ksp37, granzyme B, and 
granulysin; these changes could result in reduced cytotoxicity and insufficient production 
of IFN-γ and TNF-α [31,32]. 

Patients with COVID-19 have increased plasma concentrations of IL-6 [32], which 
significantly correlated with a reduced number of NK cells [27, 33]. It has been shown 
that in vitro stimulation of IL-6 and its soluble receptor (IL6R) inhibits the cytolytic 
functions (production of perforin and granzyme B) of NK cells; this inhibition can be 
reversed by tocilizumab that blocks IL6R [34]. In addition, TNF-α secreted by monocytes 
regulates the differentiation of NK cells [35] and is able to bind to the specific receptors 
on NK cells [36]. The level of TNF-α was found to be increased in the blood plasma of 
patients with COVID-19 [32]. Thus, dysfunction of monocytes can negatively affect the 
antiviral function of NK cells in people infected with SARS-CoV-2. 

Monocytes/macrophages and dendritic cells play a crucial role in antiviral responses, 
linking innate and adaptive immunity. Peripheral activation and accumulation of activated 
pro-inflammatory monocytes/macrophages in the lungs are recognized as one of the 
COVID-19 symptoms [37]. The SARS-CoV-2 virus activates monocytes/macrophages 
and triggers the production of pro-inflammatory mediators — IL-6, GM-CSF, IL-1β, TNF, 
CXCL-8, CCL-3 — and accelerated cell death. This can subsequently initiate a cytokine 
storm, which is also known as cytokine release syndrome. Some of these cytokines (for 
example, IL-6) are mainly secreted by macrophages, leading to macrophage activation 
syndrome [38–40]. Activated and subsequently dying macrophages contribute to high 
levels of ferritin in the blood plasma and dysregulation of iron metabolism. Abnormally 
high ferritin is one of the biomarkers for patients with severe COVID-19 [41, 42]. 

Thus, a therapy aimed at reducing the activity of macrophages may become promising 
means of suppressing the inflammatory storm during coronavirus infection. 

Flow cytometric analysis of peripheral blood mononuclear cells from patients with 
advanced COVID-19 showed a significant rise in activated CD4+ T cells and CD14+HLA-
DRlo inflammatory monocytes known to produce granulocyte-macrophage colony-
stimulating factor (GM-CSF) [43, 44]. Significantly increased systemic levels of the 
proinflammatory cytokine IL-6 were reported in several cohorts of COVID-19 patients; the 
levels of IL-6 correlated with disease severity [45]. Elevated levels of IL-6 might also be 
associated with high levels of IL-2, IL-7, IFN-γ, and GM-CSF found in secondary viral 
hemophagocytic lymphohistiocytosis (unregulated macrophage activation and 
unregulated phagocytosis). It is known that in response to viral infections, mononuclear 
cells increase their production of interleukins, IFN-I and IFN-III. This leads to the 
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activation of inflammation, the induction of pathogenic reactions of Th1 and Th17 cells, 
the recruitment of effector immune cells, and the cytokine storm [46, 47]. 

Along with that, studies on SARS-CoV-2 and other coronaviruses showed that IL-6, IL-
1β, and IFN-I/IFN-III from infected pulmonary epithelium are capable of inducing 
hyperinflammation cascades in resident (alternative) macrophages while simultaneously 
recruiting inflammatory monocytes, granulocytes, and lymphocytes from the bloodstream. 
This systemic inflammatory response can cause neutrophilic NETosis and 
microthrombosis, exacerbating the severity of COVID-19 [48]. 

T-lymphocytes play a fundamental role in the antiviral response mediated by CD4+ T 
cell-secreted cytokines, CD8+ T cell cytotoxicity, and B cell activation, ultimately leading 
to the production of antibodies. New coronaviruses can bypass these protective 
mechanisms by inducing apoptosis of T cells, as well as depleting the pool of 
lymphocytes that enter the lungs and trigger hyperinflammation during the cytokine storm 
[49–52]. Dysregulation of T cell responses can lead to immunopathology. 

It is important to clarify the role of T cells in the early immune response to the virus to 
understand the role of T cell responses. Previous studies on SARS-CoV-1 [53], as well 
as a number of recent studies on SARS-CoV-2 [27, 29, 54–56], indicate the development 
of lymphopenia with a sharply reduced number of both CD4 and CD8 T cells in moderate 
and severe clinical forms. The degree of lymphopenia, mainly CD8 T cells, in ICU 
patients correlated with the severity and mortality associated with COVID-19 [27, 39, 54, 
57]. However, patients with mild COVID-19 usually have a normal or slightly increased 
number of T cells [58, 59]. The reason for the loss of peripheral T cells in moderate to 
severe COVID-19 needs further research since direct viral damage to T cells by SARS-
CoV-2 was not found, in contrast to MERS-CoV [60]. 

Various mechanisms are likely to contribute T cells decrease in the blood, including the 
effects of inflammatory cytokines. Lymphopenia correlates with serum levels of IL-6, IL-
10, and TNF-α, while recovery in the number of T cells along with lower levels of 
proinflammatory cytokines is noted in convalescent patients [29, 57, 61]. The cytokines 
IFN-I and TNF-α promote the retention of T cells in the lymphoid organs and their 
attachment to the endothelium [62, 63]. Autopsy findings indicated massive lymphocyte 
death in the spleen and enlarged intrathoracic lymph nodes of patients who died from 
COVID-19; a possible role of IL-6 and the Fas–FasL interactions was proposed. In 
support of this hypothesis, the IL-6 receptor antagonist tocilizumab was found to increase 
the number of circulating lymphocytes [43]. Recruiting T cells to the sites of infection can 
also reduce their presence in the peripheral blood. An increased number of CD8 T cells 
was found in the bronchoalveolar lavage fluid of patients with COVID-19 [37]. Similarly, 
autopsy of a patient with SARS-CoV-2 revealed extensive lymphocyte infiltration in the 
lungs [64], although another study found only neutrophil infiltration [65]. Therefore, further 
studies are needed to determine the cause and consequence of lymphopenia in patients 
with COVID-19. 

In the study [39], it was suggested that dysregulation of T cell responses could provoke a 
more severe course of COVID-19. A significant increase in GM-CSF+ CD4 T cells with 
extremely high ex vivo IL-6 and IFN-γ production was reported in critically ill COVID-19 
patients. In addition, a decrease in the level of regulatory T cells was noted in severe 
cases of the disease [28, 54]. 

Regulatory T cells help to resolve the inflammation in acute respiratory distress syndrome 
(ARDS) in mice [66]. A decrease in γδ T cells, a subset of T cells with protective antiviral 
function, was found in critically ill patients with COVID-19 [67]. Therefore, T cell deficit 
can lead to lung immunopathology in COVID-19. 

Currently, little is known about specific functional changes in T cells associated with 
COVID-19. Most publications [36, 37, 58, 68, 69] report an increased presence of 
activated T cells characterized by the expression of HLA-DR, CD38, CD69, and CD25. 
As a rule, regardless of COVID-19 severity, the activation of CD8 T cells is more 
pronounced than that of CD4 T cells [28, 58]. Zheng et al. [29] noted that in critical forms 
of COVID-19, the number of polyfunctional T cells (producing more than one cytokine) 
was reduced in parallel with the production of IFN-γ, TNF-α, and granzyme B. Another 
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study [69] demonstrated an increase in the granzyme B and perforin levels in CD8 T cells 
of critically ill patients. 

In severe COVID-19 T cells seem to be overactivated and may become exhausted due to 
continuous expression of inhibitory markers, as well as decreased polyfunctionality and 
cytotoxicity. Conversely, there is an increase in follicular helper CD4 T cells in 
convalescent patients, as well as a decrease in the level of inhibitory markers, along with 
an increase in the level of effector molecules such as granzyme A, granzyme B, and 
perforin [29, 58]. 

In addition, memory T cells contribute to protective immunity during reinfection. Only a 
few studies addressed the specific T cell immunity in SARS-CoV-2 infection until now. A 
correlation was found between the neutralizing antibody titers and the number of virus-
specific T cells [68] in mild COVID-19 convalescents. In another study, virus-specific CD4 
and CD8 memory T cells were found in the peripheral blood of patients with moderate to 
severe ARDS [70]. 

Together, these proinflammatory processes are likely to lead to the cytokine storm 
developing in COVID-19 patients, which rationalizes the use of targeted 
immunosuppressive therapies. A clear understanding of the delicate balance between 
antiviral and inflammatory innate immune programs is essential for finding effective 
biomarkers and treatments for COVID-19. 

Humoral immune response 

The humoral immune response is critical for the clearance of cytopathic viruses and plays 
a major role in the memory mechanism that prevents reinfection. SARS-CoV-2 induces a 
sustained B cell response, as evidenced by the rapid and almost universal detection of 
virus-specific IgM, IgG, and IgA, as well as neutralizing IgG antibodies, within days of 
infection. Kinetics of antibody response to SARS-CoV-2 is well described [71, 72]. 

Currently, studies on COVID-19 mainly focus on the IgG response to SARS-CoV-2 
infection, because this line of research is highly important for the development of 
vaccines and therapeutic agents. IgG antibodies to various SARS-CoV-2 proteins can be 
determined in laboratory setting. 

S and N protein-specific antibodies were assayed in serological studies [68, 73]. 
Antibodies against the S protein prevent the virus from binding to the host cells and are, 
therefore, able to effectively neutralize the virus. The presence of circulating IgG specific 
for the viral N protein is considered as a marker of previous infection. It was found out 
[74, 75] that the levels of anti-SARS-CoV-2-IgG against the viral nucleoprotein or the 
receptor-binding domain of the S protein correlated with the virus-neutralizing activity. 

In previous epidemic outbreaks of coronavirus infections, serological responses to beta-
coronaviruses varied. In SARS-CoV, specific IgG antibodies were found in all patients 
[76]; in milder forms of MERS-CoV, some patients did not show IgG at a sufficient level 
[77]. Currently, a number of studies of humoral immune responses [68, 71, 74, 78–80] 
report the appearance of IgG antibodies against SARS-CoV-2 in the blood serum of most 
patients. Some patients, mostly with mild forms of the disease, remained seronegative 
[81–83], which was likely associated with a short follow-up period (less than 25–50 days). 
A 90-day follow-up showed that IgG was not produced in 9% (3 of 32) of patients with 
mild symptoms of COVID-19, although all patients, including seronegative, showed 
neutralizing antibodies, indicating developed humoral immunity [84]. 

Therefore, seroconversion is likely to occur detected in all patients, but the sensitivity and 
specificity of IgG detection might be different. 

Among those who had recovered after the SARS-CoV epidemic of 2003, the level of 
neutralizing antibodies remained significant for 3 years; in some reports, these antibodies 
persist to the present. Moreover, these persistent antibodies may have a neutralizing 
effect against the current coronavirus infection [85]. The duration of protective immunity 
against SARS-CoV-2 is currently unknown. 

Information about the dynamics of the antibody response and serological status is 
ambiguous. Thus, Long et al. [78, 86] report that in 97% of 37 patients with mild COVID-
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19, the antibody titers decrease in 2–3 months after infection. According to Wajnberg et 
al. [87], the level of specific IgG remains stable for 82 days after the onset of symptoms. 
Marklund et al. [84] noted that the level of antibodies increased over time in some 
patients with either mild or severe forms of the disease. Xiao et al. [88] observed elevated 
levels of IgG in 34 patients with COVID-19 within 5 weeks of the onset of the disease; the 
values remained stable for 7 weeks. A number of reports [84, 89, 90] indicate that 
seroconversion occurs earlier among severely ill patients and specific antibodies are 
produced at a higher level. In addition, study [91] noted that gender did not significantly 
affect the serum level of anti-SARS-CoV-2 IgG in severe COVID-19. 

The small number of published studies and the inconsistency of accumulated data do not 
allow us to draw final conclusions about the features and dynamics of humoral immunity 
in different forms of COVID-19. Further studies are required for the development of 
vaccines and pharmacotherapy, personalization and differentiation of approaches to 
immunization against this infection. 

Immunology-based approaches to therapy and specific prevention of COVID-19 

Interferon therapy 

SARS-CoV-2 effectively inhibits the expression of IFN-I. Given its strong 
immunomodulatory nature, the administration of IFN-I to COVID-19 patients in the early 
stages of the disease may prevent the development of immunopathologies in the later 
stages. Numerous clinical trials on the use of interferon therapy have been launched. A 
study on efficacy of IFN-α-1β nasal drops combined with the immunomodulator thymosin 
α1 for the prevention of COVID-19 in high-risk medical staff is ongoing in China 
(NCT04320238, n=2944). A randomized clinical trial conducted in Iran [92] showed that 
the administration of IFN-β-1α to patients with severe COVID-19 reduced their hospital 
stay and 28-day mortality, especially with early treatment. The use of IFN-α2-β in 
combination with Arbidol significantly reduced the virus persistence in the upper 
respiratory tract and shortened the presence of the inflammatory markers IL-6 and CRP 
in adults hospitalized with COVID-19 [93] at the same time. However, these therapies 
increase the risk of over-activation of proinflammatory signals, which can enhance 
immunopathological manifestations [94]. 

Type III interferons can become an alternative to IFN-I because they also possess 
antiviral functions but are less toxic in terms of mediating immunopathology [95]. IFN-III–
IFN-λ induces the production of IFN-γ by NK cells indirectly through IL-12, which partially 
suppresses and slows the immune response [96, 97]. A placebo-controlled study of 
pegylated IFN-λ is currently underway in patients with mild COVID-19 (NCT04331899, 
n=120). The main advantage of IFN-λ is that it can prevent the damaging effect of 
neutrophils on the lungs. On the other hand, it reduces the rate of tissue repair; in the 
context of COVID-19, which has a long time-course, this effect of IFN-λ may increase a 
risk of secondary infections [98]. Administration of interferons can cause an imbalance in 
the immune response and severe immunopathology in COVID-19. Therefore, careful 
monitoring of safety and efficacy of interferon therapy should be a priority in the 
development of protocols and clinical trials [99]. 

The use of neutralizing antibodies and convalescent plasma for COVID-19 therapy 

Neutralizing antibodies. The effectiveness of using neutralizing antibodies against 
SARS-CoV-1 and MERS-CoV has been documented [100, 101,102]. In the case of 
SARS-CoV-2, research efforts are primarily focused on identifying antibodies produced in 
diseased patients or under conditions of animal vaccination. 

To obtain antibodies that neutralize the SARS-CoV-2 virus from the blood of recovered 
patients, Chinese scientists isolated memory B cells specific to the viral receptor-binding 
domain (RBD). Then these cells were cloned to express recombinant forms of the 
respective antibodies. The resulting four antibodies showed a high neutralizing 
potential in vitro. All of them inhibited the binding between ACE2 and RBD; however, 
blocking this interaction is not always a necessary condition for the effect of antibodies 
against SARS-CoV-2 [103]. 

Research is underway to obtain animal-raised antibodies that can be directly 
administered to SARS-CoV-2 infected patients. Regeneron Pharmaceuticals synthesized 
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a combination cocktail of two antibodies REGN-COV2. The preparation is good at 
reducing the viral load when the immune response has not yet been manifested or the 
initial viral load is high [104]. AstraZeneca and Oxford University have developed a 
preparation of 2 monoclonal antibodies to the S protein of SARS-CoV-2 for the 
prevention of COVID-19 in adults. Therapy with anti-SARS-CoV-2 monoclonal antibodies 
seems promising since the medication can be used to block ongoing infection and as a 
prophylactic agent. 

Convalescent plasma. Historically, passive immunotherapy used convalescent whole 
blood or convalescent plasma, human immunoglobulin, polyclonal or monoclonal 
antibodies. However, at present, the preference is given to plasma collected by apheresis 
[105]. The safety and efficacy of convalescent plasma in severe respiratory viral 
infections and severe COVID-19 are not fully studied [106, 107]. 

Studies conducted in a limited number of patients showed the potential efficacy of 
convalescent plasma transfusion as an adjunct treatment for severe COVID-19. The 
administration of 2 doses to 5 patients [108], 1 dose to 10 patients [109], and from 1 to 8 
doses to 4 patients, including a pregnant woman [110], improved their clinical condition. 
A meta-analysis of 1 randomized controlled trial, 3 controlled and 10 uncontrolled clinical 
trials (5201 participants in total) on safety of convalescent plasma, revealed serious 
adverse events in the first 4 h after plasma transfusion. Other side effects were 
predominantly allergic or respiratory in nature, including anaphylaxis, shortness of breath, 
and acute lung injury. None of the studies reported adverse events in the control group 
[107]. 

The timing of convalescent plasma therapy is of great importance. In patients with SARS-
CoV-1, the best results were observed with the administration of plasma before the 
14th day of illness [111], like it was found with influenza [112]. As shown, such therapy 
was more effective in PCR-positive, but seronegative patients, however, the amount of 
plasma and the frequency of transfusions require further study. The use of convalescent 
plasma from patients who have recovered from COVID-19 appears to be promising for 
the prevention of COVID-19 or when administered within 14 days after the onset of 
symptoms. Protection can last from several weeks to several months [109, 113, 114]. 

The results of a retrospective analysis of the use of convalescent plasma in 3082 adult 
patients treated in US hospitals for COVID-19 were published [115] in January 2021. A 
decrease in mortality was noted following the use of plasma with high titers (but not low 
titers) of specific antibodies in patients without mechanical ventilation. Initiation of anti-
COVID plasma therapy up to 3 days after confirming the diagnosis of COVID-19 was 
associated with a lower mortality rate, in comparison to the later initiation of treatment. 

Several non-randomized trials [108–110, 116, 117] showed the safety of convalescent 
plasma therapy and its beneficial effect in patients with severe COVID-19. Convalescent 
plasma has also been proposed for prophylactic use in people at risk (with comorbid 
pathology) or in medical staff who have been in contact with patients with COVID-19. The 
FDA has approved the use of convalescent plasma for the treatment of critically ill 
patients [118]. 

Other advantages of convalescent plasma include its availability and the seemingly low 
incidence of serious side effects. However, this cannot justify using a treatment with 
unproven efficacy. It is necessary to conduct randomized clinical trials to determine the 
optimal timing and indications for this therapy [119]. 

Anti-inflammation therapy. Glucocorticoids 

The host’s immune response plays a key role in the pathogenesis of severe COVID-19. 
Over time, it became obvious that lung damage in COVID-19 develops against the 
background of both overstimulation and suppression of the immune response [120]. 
Typically, there is a clinical picture of massive vascular inflammation, disseminated 
intravascular coagulation, shock, and ARDS [32, 120, 121]. Patients with severe COVID-
19 face a double challenge. On the one hand, their fight against a viral infection 
necessitates the virus elimination from the body. On the other hand, the patients suffer 
from hyperinflammatory reactions, pulmonary thrombosis, increased vascular 
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permeability, and ARDS [122]; those disorders necessitate the use of glucocorticoids 
(GCs) [123]. 

The anti-inflammatory effect of GCs can help overcome both hyperstimulation of the 
immune system and inflammation, as well as ARDS [123–126]. These medications are 
easily available and the treatment is cost-effective. However, the use of GCs was 
associated with the development of side effects in previous studies [127–132] with 
SARS-CoV-1 and MERS-CoV. Among them there was a slowdown in viral clearance, an 
increase in opportunistic infections, hyperglycemia, and suppression of the hypothalamic-
pituitary-adrenal axis; those complications may limit the use of GCs in coronavirus 
infections. Therefore, during the SARS-CoV-2 pandemic, a large number of observational 
and randomized controlled trials were launched to study the efficacy of GCs against 
COVID-19. 

Thus, preliminary results of the RECOVERY randomized trial [133] on dexamethasone 
therapy in hospitalized adults with confirmed COVID-19 were published in June 2020. For 
the first time dexamethasone was found superior to the standard treatment in reducing 
28-day mortality in patients requiring oxygen therapy or mechanical ventilation. 

In a prospective meta-analysis of seven randomized clinical trials, the administration of 
GCs was shown to be associated with a lower 28-day mortality from any cause [134]. 
WHO recommended against using GC medications in the early days of the pandemic. 
Currently, WHO proposes using systemic GCs for severe and critical forms of COVID-19, 
as well as in refractory shock and, if necessary, in patients with ARDS on mechanical 
ventilation [125, 135, 136]. 

In December 2020, Van Paassen et al. [137] published a systematic review and meta-
analysis of 44 studies evaluating the efficacy of GC therapy in COVID-19, involving 
20,197 patients aged 34 to 75 years. It was found that systemic GCs significantly had 
reduced short-term mortality (OR 0.72, 95% CI 0.57–0.87) and the need for mechanical 
ventilation in patients with acute respiratory failure (OR 0.71, 95% CI 0.54–0.97). 
However, it is too early to draw conclusions about the efficacy and safety of GCs in 
COVID-19. It is necessary to conduct large-scale studies where the indications for using 
GCs are clearly defined together with the consistent timing, dose, and duration of 
treatment. 

Anti-cytokine therapy 

Some patients with SARS-CoV-2 infection develop pulmonary complications that can 
progress into ARDS and even more serious extrapulmonary systemic hyperinflammation 
syndrome [138]. 

Numerous studies [57, 61, 64, 139–142] have shown that hyperinflammation and 
cytokine storms, as well as increased levels of pro-inflammatory cytokines IL-6, -8, -2, -
10, TNF-α, and IFN-α, correlate with the severity of COVID-19 and poor outcomes. 

Monoclonal antibodies to IL-6. Following reports that IL-6 is a critical factor of the 
cytokine storm associated with COVID-19, monoclonal antibodies against IL-6 have been 
proposed as a therapeutic agent [141]. Clinical studies are underway to evaluate the 
efficacy of therapy with monoclonal antibodies against IL6R (tocilizumab, sarilumab, 
siltuximab) in pneumonia caused by COVID-19. Currently, only preliminary results are 
available. 

Thus, Perrone et al. [143] showed that tocilizumab reduced the 30-day mortality with no 
significant toxic effects in patients who did not initially require mechanical ventilation. Xu 
et al. [144] studied patients with COVID-19 who received a single dose of tocilizumab 
combined with lopinavir, methylprednisolone, and oxygen therapy. Tocilizumab restored 
lymphocyte counts in 10 out of 20 patients and resolved pneumonia in 19 out of 20 
patients (as determined by chest CT). All patients showed improved symptoms and there 
were not any secondary pulmonary infections. 

In a retrospective study [145], a link was found between therapy with tocilizumab and a 
decrease in the likelihood of admission to the intensive care unit, as well as the need for 
mechanical ventilation. However, no significant reduction in mortality was observed in 30 
patients with severe pneumonia associated with COVID-19. 
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It is reported [146] that phase III of the ongoing large-scale trial of sarilumab will be 
continued only in the “critical” group of patients (with improved outcomes) and not in the 
“severe” group. 

In Russia, as it was recommended, targeted therapy with IL-6 inhibitors (tocilizumab, 
sarilumab) or IL-1β (canakinumab) in combination with GCs should be initiated to 
suppress the cytokine storm and prevent the development of severe lung damage and 
multiple organ failure [147]. 

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic 
growth factor and a key mediator of tissue inflammation. GM-CSF has several cellular 
sources, including monocytes, macrophages, T cells, B cells, neutrophils, and tissue-
resident cells [148]. GM-CSF has multiple pro-inflammatory effects on myeloid cells, 
including macrophages, monocytes, and neutrophils, by transmitting signals through the 
GM-CSF-α/β receptor complex that is expressed on myeloid cells. GM-CSF stimulates 
survival and facilitates polarization of the pro-inflammatory phenotypes of 
monocytes/macrophages, which primarily produce pro-inflammatory cytokines, including 
TNF-α, IL-1β, and IL-6. GM-CSF also increases the survival rate of neutrophils, 
stimulates their oxidative burst, enhances phagocytosis, promotes the adhesion of 
neutrophils to endothelial cells, and the transfer of neutrophils to inflammation sites [148]. 
GM-CSF is not detected in the healthy people’s circulating blood, but it was detected in 
the plasma of some patients hospitalized with COVID-19 [32]. It has been shown that the 
therapeutic inhibition of GM-CSF signaling by mavrilimumab in patients with rheumatoid 
arthritis reduces the level of IL-6 in the blood serum and indirectly suppresses the 
activation of T cells [149]. Treating patients with severe lung damage caused by COVID-
19 using mavrilimumab — the monoclonal antibody to the GM-CSF receptor — resulted 
in good tolerability and clinical benefit (reduced fever and improved oxygenation). 

Blocking GM-CSF can prevent immunopathology caused by the virus. The efficacy and 
safety of mavrilimumab and otilimab for COVID-19-associated lung damage are currently 
under study. 

Janus kinases regulate signal transduction into immune cells. Inhibition of cytokine 
production and Janus kinase activity by low molecular weight synthetic drugs makes it 
possible to block the cytokine storm [147]. It was found that the Janus kinase inhibitor 
baricitinib had the ability to inhibit the production of IL-6 [150]. However, this agent can 
lead to an increase in the number of NK cells, as it is shown among patients with 
rheumatoid arthritis treated with baricitinib [151], and, thus, adversely affect the condition 
of patients with severe COVID-19. Clinical trials of baricitinib, tofacitinib, and ruxolitinib in 
moderate COVID-19 patients are ongoing. 

According to recommendations adopted in Russia, the use of Janus kinase inhibitors — 
baricitinib and tofacitinib — is possible for moderate pneumonia in order to suppress 
hyperinflammation and prevent the development of serious lung and other organ damage 
caused by COVID-19 [147]. 

Anakinra. Nod-like receptors play an important role in the innate immunity: they protect 
the body from a wide range of pathogens, including RNA viruses [152]. It is known that 
SARS-CoV induces the nod-like receptor NLRP3, which in turn stimulates caspase-1, a 
molecule involved in the activation and massive release of IL-1β and IL-18 [153]. These 
two can be successfully inhibited by anakinra, a recombinant antagonist of human IL-1 
[154]. A study is underway (NCT04339712, NCT04330638) to test different dosing 
regimens of anakinra in COVID-19: from 100 mg/day subcutaneously for 28 days to 400–
600 mg/day intravenously for 5–7 days. 

Colchicine is used to treat gout and familial Mediterranean fever. In recent years this 
drug has been used in the treatment of cardiovascular diseases to reduce the risk of 
ischemic complications [155]. A possible mechanism of action of colchicine in COVID-19 
is its effect on cell adhesion molecules and inflammatory chemokines. Colchicine can 
inhibit the activation of NLRP3 in the inflammasome and also directly inhibit the synthesis 
of TNF-α and IL-6 [156]. Colchicine binds to the intracellular protein tubulin, which 
prevents the virus penetration into the cell nucleus and its subsequent replication; as a 
result, the viral load decreases [157]. The GRECCO-19 randomized study showed that 
treatment of patients with COVID-19 with colchicine helped reduce the time needed for 
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normalization of the clinical condition, although no significant decrease in CRP levels was 
found [156]. The COLCORONA study [158] reported that the use of colchicine in 
outpatients with COVID-19 reduced the risk of hospitalization by 25%, death by 44%, and 
the need for ventilation by 50%. 

Studies, including those in Russia, continue to test the efficacy of conventional 
therapeutic doses of colchicine in the treatment of COVID-19 (NCT04322682, 
NCT04328480, NCT04326790, NCT 04403243). 

Immune checkpoint inhibitors. In recent years there is an increasing therapeutic use of 
immune checkpoint inhibitors (ICIs) — antibodies that block the cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), the protein of programmed cell death 1 (PD-1), and the 
ligand of programmed cell death receptor (PD-L1) [159]. Data on COVID-19-associated 
morbidity and mortality in cancer patients receiving ICIs are conflicting. A number of 
authors [160–162] noted that no increased susceptibility to SARS-CoV-2 infection was 
observed in these patients. 

A growing body of evidence suggests that ICIs may be instrumental in treating viral 
infections by preventing T cell depletion. However, some cancer patients receiving ICIs 
require immune-suppressive therapy for autoimmune side effects, which in turn may 
aggravate the course of SARS-CoV-2 infection. In this regard, further research is needed 
to assess the effectiveness of this therapy in patients with COVID-19. 

Mesenchymal stem cells 

Multipotent mesenchymal stem cells (MSCs) are present in most human tissues, 
including the umbilical cord. It is assumed that MSCs can reduce acute lung injury and 
inhibit the cell-mediated inflammatory response caused by SARS-CoV-2. MSCs lack the 
ACE2 receptor (used by the coronavirus to enter cells); therefore, they are resistant to 
infection [163, 164]. 

A pilot clinical study from China on intravenous MSCs transplantation involved 10 
patients with confirmed COVID-19. Seven patients (1 with critically severe course, 4 with 
severe, and 2 with moderate COVID-19) received MSCs; 3 patients in serious condition 
— placebo. All patients who received MSCs recovered. Among the patients in the control 
group, one individual died, one developed ARDS, and one remained in a stable serious 
condition [165]. In another pilot study [166] 29 patients with severe COVID-19 received 
standard therapy (oxygen, umifenovir/oseltamivir, antibiotics as indicated, and GC); 12 
patients received the same standard therapy and infusion of human umbilical cord MSCs 
(hUC-MSC). All patients who received hUC-MSC recovered and did not require 
mechanical ventilation. In 4 patients on standard therapy only, the condition worsened, 
they required mechanical ventilation, three of them died. However, the results are not 
statistically significant because the sample size was small. 

In summary, it should be emphasized that an excessive inflammatory response with 
signs of a cytokine storm aggravates the course and worsens the prognosis in COVID-
19. Numerous studies on SARS-CoV-2 and subsequent hyperinflammation are currently 
underway [167]. Medications used in daily rheumatologic practice may represent 
potential therapeutic options for COVID-19 due not only to their anti-inflammatory effect 
but also to some of their inherent antiviral properties. 

Prophylactic vaccines 

SARS-CoV-2 is a new virus; therefore, the duration of protective immunity after infection 
is yet to be determined, although there is a possibility of a rapid decline in natural 
immunity [168]. 

A problem of vaccination against SARS-CoV-2 is that the vaccine-induced immune 
response can cause an acute reaction to the vaccine itself or an increase in infection 
severity upon contact with the virus; this mechanism could develop through an increase 
in T cells and antibody-dependent amplification syndrome [169]. In addition, some 
viruses use antibodies to enter target cells [170–172]. An increase in morbidity in 
vaccinated individuals who contracted an infection has already been observed, for 
example, with measles, respiratory syncytial virus, and Dengue virus [173–175]. 
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By now the following types of vaccines against SARS-CoV-2 have been developed and 
undergo preclinical and clinical studies: inactivated; live attenuated; protein subunit; 
vector; based on synthetic virus-like particles, based on nucleic acids — DNA and RNA 
[168, 176, 177] . 

 
Most of the vaccines target the S protein of SARS-CoV-2. However, previous experience 
shows that the nucleocapsid (N) of the coronavirus is also immunogenic — antibodies 
against the N protein of SARS-CoV-1 are formed in a higher titer and persist longer than 
antibodies against protein S in recovered patients [178]. It is unknown if N protein is a 
potential protective immunogen for SARS-CoV-2, although vaccine formulations using 
the whole virus (inactivated, live attenuated vaccine) would potentially include N protein. 

The first vaccine approved by WHO was BNT162b2 (Pfizer, Inc., USA and BioNTech, 
Germany). It consists of lipid nanoparticles modified with nucleosides of mRNA encoding 
the glycoprotein S of the SARS-CoV-2 virus [179]. 

Preclinical tests have shown both cellular and humoral immune responses against 
SARS-CoV-2 in mice [180] and humans (clinical phase I/II) — the formation of 
neutralizing antibodies upon a single vaccine administration [181]. A randomized phase 
II/III trial of 43,548 people showed that a two-dose regimen of BNT162b2 provided 95% 
protection against COVID-19 in people aged 16 and over. The 2-month safety of the 
vaccine was similar to that of other antiviral vaccines [182]. 

The second and third vaccines were developed by AstraZeneca and the University of 
Oxford (UK); those are produced in South Korea and India. AZD1222 is a vector vaccine 
based on the ChAdOx1 chimpanzee adenovirus carrying the coronavirus S protein gene. 
Preliminary results from the phase I/II study showed that seroconversion of neutralizing 
antibodies was observed in 91% of cases after one dose and 100% after two doses of 
the vaccine. An IFN-γ response has also been reported [183]. Humoral responses to the 
SARS-CoV-2 spike protein peaked on day 28 after vaccination and cellular responses 
were detected in all participants on day 14. Neutralizing antibodies were produced in all 
participants after the second dose of the vaccine. In addition, strong cellular and humoral 
immunogenicity was observed. Local and systemic adverse reactions of mild to moderate 
severity (pain at the injection site, chills, malaise, and headache) peaked on the first day 
of vaccination and were controlled with paracetamol [183]. 

The fourth vaccine which was recommended by WHO for use in emergencies is a single-
ingredient preparation from Janssen Pharmaceutica of Johnson & Johnson (Belgium, 
USA). 

According to the interim results of phase III clinical trials, the efficacy of the vector 
vaccine Ad26.COV2.S at a single dose was 66.1%, as assessed by preventing moderate 
and severe/critical forms of the disease and 85% in preventing severe/critical forms of the 
disease among all study participants from different regions, 28 days after vaccination. 
Anti-viral protection appears already on the 14th day of vaccination [184]. 

The next (fifth) vaccine approved by WHO was mRNA-1273 (Moderna, USA) based on 
mRNA. Preclinical studies showed that it effectively protected mice against the virus 
[185]. In phase I of clinical trials, the vaccine showed immunogenicity and 100% 
seroconversion after the second dose [186]; the antibody titer increased with an increase 
in the administered dose. According to the results of a phase III study, the mRNA-1273 
vaccine is 94.1% effective in preventing COVID-19. Mild, moderate, and severe systemic 
side effects have been identified; as reported, their severity significantly increases with 
the second vaccination and/or with the use of high doses of the vaccine. Antigen-specific 
T cells were most often found in the 100-µg vaccine group [187]. 

The sixth agent approved by the WHO against SARS-CoV-2 is the Vero Cell vaccine 
(Sinopharm, China) based on inactivated coronavirus. Phase III trials showed that its 
efficacy in preventing symptomatic disease and hospitalization is 79% for all age groups, 
which is lower than that of Pfizer or Moderna [188]. 

Three vaccines have been currently registered in Russia: Sputnik V (National Research 
Centre for Epidemiology and Microbiology named after Honorary Academician N.F. 
Gamaleya), EpiVacCorona (State Scientific Center of Virology and Biotechnology 
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“Vector” of Rospotrebnadzor), and CoviVac (Chumakov Federal Scientific Center for 
Research and Development of Immune-and-Biological Products of Russian Academy of 
Sciences). 

Sputnik V (Gam-COVID-Vac/Sputnik V) is a vector vaccine based on two different 
adenoviral vectors, Ad26 and Ad5 [189]. 

The results of phase I and II clinical trials show that Sputnik V is highly immunogenic and 
elicits strong humoral and cellular immune responses in 100% of healthy adult 
volunteers, while the antibody titers in vaccinated participants are higher than those in 
COVID-19 convalescents. The most common side effects were pain at the injection site 
(58%), fever (50%), headache (42%), asthenia (28%), and muscle/joint pain (24%). Most 
adverse events were mild and less pronounced with the administration of the freeze-dried 
vaccine [189]. 

An interim analysis of phase III clinical trials showed that the vaccine efficacy was 91.6% 
(95% CI 85.6–95.2), including people over 60 years old. According to [190], Sputnik V 
protects 100% against moderate and severe COVID-19. 

The EpiVacCorona vaccine consists of chemically synthesized peptides identical to the S 
protein immunogens of the SARS-CoV-2 coronavirus, conjugated to a carrier protein, and 
adsorbed on aluminum hydroxide. The results of phase I and II clinical trials showed that 
in 100% of volunteers, vaccination caused the development of antibodies specific to the 
antigens that make up the vaccine. Seroconversion (with a neutralizing antibody titer 
≥1:20) was confirmed in 100% of cases 21 days after the second vaccination [191]. 

CoviVac is the latest Russian development based on the platform of inactivated children’s 
poliomyelitis vaccine. CoviVac not only blocks the viral S protein but mimics the body’s 
natural process of fighting the virus. The CoviVac preparation is based on the whole 
virus, therefore, it is effective against most variants or mutations of SARS-CoV-2 [192]. 

Recent publications have revealed evidence of the so-called trained immunity that could 
protect against COVID-19. This principle is based on the non-specific enhancement of 
immune responses using the BCG vaccine (Mycobacterium bovis Bacillus Calmette–
Guérin) or other bacterial components. The ability of BCG vaccine to induce “trained” 
immunity and stimulate antiviral immune response has been shown in animal 
experiments and clinical trials. Several countries are conducting randomized clinical trials 
in vulnerable populations to study the possibility of increasing protection against COVID-
19 through BCG vaccination. In addition, it is important to determine which BCG strain 
and which vaccine can produce the strongest immunity [193, 194]. 

It is too early to draw conclusions on the effectiveness of anti-SARS-CoV-2 vaccines and 
their role in reducing the burden of the pandemic. 

Conclusion 

As understanding the roles of immune responses in COVID-19 disease has evolved, a 
new vision to the immunity to SARS-CoV-2 has been revealed to the public health. The 
two opposite aspects of immune reactions during infection, the ‘good’ and ‘harmful’ 
patterns, are the keys to set up effective strategies in order to control this pandemic 
(Figure 2). Today, researchers are urged to explore more the mechanisms involved in 
COVID-19 immune-pathogenesis in order to bring out the essential elements. The rapid 
spread of SARS-CoV-2 and the outbreak of the pandemic around the world have become 
a reason for appearing of a large number of scientific papers shedding light on the 
immunology of the new coronavirus infection. In many of these publications, studies on 
the previous outbreaks of infections associated with SARS-CoV-1 and MERS-CoV have 
been taken into consideration. However, the immune responses to SARS-CoV-2 are 
different from those seen in other coronavirus infections. Thus, in contrast to the previous 
two pathogens, a large number of infected individuals remain asymptomatic, the 
incubation period lasts longer, and the transmission rate is higher than with other 
coronaviruses. Consequently, a clear understanding of the immunological aspects of the 
virus-host interaction is needed to develop means of effective treatment and prevention 
of COVID-19. 
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