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ABSTRACT 
Typhoid fever is a global disease which is endemic in some African countries 
(including Nigeria) where hygiene practices are not properly put in place. In this 
research we focused on “Mathematical Modelling for the Treatment of Typhoid 
Fever”. We used modified model in this research with the compartments, S, IC, 
I, and T, where the compartment S(t) is used to represent the number of 
individuals that are prone to the disease at time t or those susceptible to the 
disease. IC(t) is used to represent the number of asymptomatic carriers at time t. 
I(t) is used to represent the number of individuals who have been infected with 
the disease and are capable of spreading the disease to the other individuals at 
time t. T(t) is used to represent the number of individuals who have been 
infected with the disease and are treated. Data are collected from my case of 
study “the General Sani Abacha Specialist Hospital, Damaturu Yobe state”. We 
have studied the effect of carriers and treatment on the transmission dynamics 
of typhoid fever. A disease-free equilibrium was obtained and its stability was 
analysed using linearized method. We computed the basic reproduction number 
(R0) in terms of the model parameters. We were solved the equations of the 
model for all individuals governing this research. We solve the equation for 
difference time and in difference experiments, we also carried out numerical 
experiments of solutions of the model using the model parameters of interest 
and we also drew the graphs that displayed the results for each compartment of 
the model. 
 
INTRODUCTION   
 Typhoid fever is a disease caused by a salmonella bacterium (Salmonella 

typhi) and transmitted by ingestion of water and/or food contaminated with 
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faeces (stool) (Abboubakar and Racke, 2019). Typhoid fever is prevalent in 

areas of the world where hygiene is precarious (WHO,2018).The disease is 

mainly manifested by a fever that gradually rises to 40◦C, headaches, insomnia, 

fatigue and anorexia. Fever may be accompanied by digestive signs (stomach 

ache, diarrhoea or constipation, vomiting). The symptoms can last several 

weeks. In some cases, the infected host is asymptomatic. but participates in the 

transmission of the disease. In severe forms without treatment, evolution can be 

fatal in 10% of cases. The treatment of typhoid fever is based on antibiotic 

medication. There are 11 to 21 million estimated cases of typhoid fever and 

approximately 128,000 to 161,000deaths annually, compared to an estimated 6 

million cases of paratyphoid fever and 54,000 annual deaths (Jacquinet et al., 

2018). 

Although some progress has been made in the fight against typhoid fever, such 

as antibiotic treatments, vaccination and environmental sanitation as a means of 

prevention, typhoid fever is still a public health problem in developing 

countries. There are two available vaccines to prevent typhoid fever. Although 

their price in the market of vaccine has become affordable, access in some 

developing countries remains a problem (WHO, 2018).Thus, the authorities of 

the areas where this disease occurs must choose between treatment and/or 

prevention means. Asymptomatic carriers are believed to play an essential role 

in the evolution and global transmission of typhi, and their presence greatly 

hinders the eradication of typhoid fever using treatment. Treatment is given to 

all infected individuals, however antibiotics can be prescribed to treat typhoid 

fever and vaccination should be considered for household members of known 

carriers and persons travelling to or living in the developing countries where 

typhoid fever is common. Different models have been developed to analyse the 

uptransmission dynamics of typhoid fever as well as the effectiveness of some 

intervention strategies against the spread of typhoid infections. for example, a 

mathematical model on the transmission dynamics of typhoid fever (Tilahun et 

al., 2017). A mathematical model to investigate the effect of carriers on the 
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transmission dynamics of infectious disease   (Darja,2015). A mathematical 

model to study the effect of carrier on the transmission dynamics of typhoid 

fever (moffat et al., 2014).The model studies the dynamics of typhoid fever by 

incorporating vaccination rate as a control measure However, none of them 

considered treatment as a control measure. In this study, i will formulate the 

work by incorporating treatment in the dynamics of the disease. The basic 

reproduction number (R0) is calculated and finally the modified model is solved 

numerically. 

STATEMENT OF THE PROBLEM 

Typhoid fever is a global disease which is endemic in some African 

countries (including Nigeria) where hygiene practices are not properly put in 

place. The dynamics of the disease is modelled by many authors. None of the 

studies incorporate treatment as a control measure. However in this study, we 

will formulate the work to incorporate treatment in the dynamics of the disease. 

Furthermore, we also study the existence and stability of the equilibrium states 

of the model. The basic reproduction number (R0) is determined using the next 

generation method and the modified model is solved numerically. 

AIM AND OBJECTIVES OF THE STUDY 

The aim of this Study is to build up a mathematical model for the treatment 

of typhoid fever, which has the followings objectives 

 To model the treatment of typhoid fever 

 To determine the stability of the disease-free equilibrium (DFE) state by 

linearization method 

 To compute the basic reproduction number (R0) using the next generation 

method. 

 To carry out numerical experiments of solutions of the model using the 

model parameters of interest. 
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SIGNIFICANCE OF THE STUDY  

Treatment is the commonest method of control and eradication of 

diseases. Modelling the treatment of typhoid fever is very significant and 

therefore, very effective method to control or eradicate the disease. The study 

on this model will be of immense benefit to the ministry of health, hospitals, the 

state government and other researchers that wish to carryout similar research as 

the study will be able to discuss the treatment of typhoid fever. 

SCOPE AND LIMITATION OF THE STUDY 

This study is limited to the formulating a mathematical model for 

treatment of typhoid fever. Although it limited only to formulating a 

mathematical model for the treatment of typhoid fever but it can be also apply is 

some areas of researchers if needed 

1.1 RESEARCH  QUESTIONS 

The study came up with research questions so as to be able to ascertain the 

objectives of the study. Research questions are very importance in research.  

The research questions are stated below as follows; 

 How to model the treatment of typhoid fever? 

 How to determine the stability of the disease-free equilibrium (DFE) state 

by linearization method? 

 How to determine the basic reproduction number (R0) using the next 

generation? 

 How to carryout numerical experiments of solution of the model using 

the model parameters of interest?   
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LITERATURE REVIEW 

 The reviews of previous studies into closely related problems 

provide the prospective of the proposed study. Many researchers conducted a 

research on modelling of typhoid fever. 

Peter et al. (2018), defined typhoid fever as one of the infectious diseases 

which is endemic in most part of the world. It is systemic infection caused by 

Salmonella typhi (S typhi). The bacteria is transmitted through food and water 

contaminated with faces and urine of an infected patient or a carrier. Once the 

bacteria enters the body they travel in the human intestines, and then to the 

bloodstream 

Mukhopadhyay et al.(2018), stated that typhoid or enteric fever is 

mainly caused by Salmonella enterica serovar Typhi and also to a lesser extent 

by S. Paratyphi A. Humans are the only reservoir for these organisms. The main 

sources of infection are the stool and urine of infected persons, with the 

important vehicles being contaminated water, food and flies. 

Amiciza et al.(2019), stated that Typhoid fever (TF), also known as 

enteric fever, is a potentially life-threatening multi-systemic illness. It is mainly 

caused by Salmonella enterica, subspecies enterica serovar typhi, and to a lesser 

extent by serovars paratyphi A, B, and C, which are members of the family of 

Enterobacteriaceae 

Milligan, Paul, and Neuberger (2018), they proposed a paper and stated 

that typhoid fever is a bacterial infection found mainly among children and 

adolescents in southern and eastern Asia, Africa, Latin America and the 

Caribbean. They also added that, typhoid fever spreads through contaminated 

food, drink, or water. It is usually characterized initially by fever, headache, and 

abdominal symptoms, although other non-specific symptoms may be present. 

The infection also sometimes causes confusion or psychosis. In late stages of 

the infection, intestinal perforation or massive intestinal haemorrhage may 

occur.  
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Adu-Gymfi et al.(2019), in their research on Salmonella Typhi, were 

described that Typhoid fever, caused by Salmonella enterica, serovar Typhi, is 

restricted to humans as its host and evades the human immune system with ease. 

This quality has been one of the many reasons why it is commonly found as an 

endemic bacterium in emerging economies. Also, due to a remarkably low yield 

from blood cultures (median of 1 CFU/mL of blood), Salmonella septicemia is 

uncommon. New evidence gathered together with clinical investigations have 

provided insight into the mechanisms that underlie the pathogenesis of typhoid, 

host restriction as well as antibiotic and vaccine susceptibility 

Keeling, M.J and Canon, L. (2019), in their paper "Mathematical 

Modelling of Infectious Diseases" introduced that, Mathematical models allow 

us to extrapolate from current information about the state and progress of an 

outbreak, to predict the future and, most importantly, to quantify the uncertainty 

in these predictions. Here, we illustrate these principles in relation to the current 

H1N1 epidemic. They also said that, many sources of data are used in 

mathematical modelling, with some forms of model requiring vastly more data 

than others. However, a good estimation of the number of cases is vitally 

important. Mathematical models, and the statistical tools that underpin them, are 

now a fundamental element in planning control and mitigation measures against 

any future epidemic of an infectious disease. Well parameterized mathematical 

models allow us to test a variety of possible control strategies in computer 

simulations before applying them in reality, they added. 

World Health Organization (2018), introduced Ty2la typhoid vaccine, 

WHO ssid Ty21a is a live oral vaccine derived from an attenuated strain of S. 

Typhi, approved for use in children aged six years or older. It is ail able as an 

enteric-coated capsule and is given in three doses (four doses in North America) 

every other day. The liquid formulation, which was approved in children over 

two years old, is not currently available Said WHO. It elicits protection that 

starts10 to 14 days after the third dose. 
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Milligan, et al.(2018),in their work they introduced Vi polysaccharide 

vaccine( injection one dose). The said a single dose of Vi polysaccharide 

vaccine prevents around two-thirds of typhoid cases in the first year after 

vaccination (year 1: 69%, 95% CI 63% to 74%; 3 trials, 99,979 participants; 

high-certainty evidence).  

Peter et al.(2018), proposed that Treatment of typhoid is based on 

antibiotic susceptibility of the patient blood culture. The oral chloramphenicol, 

amoxicillin may be used if the strain is sensitive. The chronic carrier state may 

be eradicated using oral therapy, ciprooxacin or noroxacin. Multi-drug resistant 

strains of S.Typhi are increasingly common worldwide which makes treatment 

by antibiotics more difficult and costly. 

Nasstrom et al.(2018), in their paper "Diagnostic metabolite biomarkers 

of chronic typhoid carriage" state that, Salmonella Typhi and Salmonella 

Paratyphi A are the agents of enteric (typhoid) fever; both can establish chronic 

carriage in the gallbladder. Chronic Salmonella carriers are typically 

asymptomatic, intermittently shedding bacteria in the feces, and contributing to 

disease transmission. Detecting chronic carriers is of public health relevance in 

areas where enteric fever is endemic, but there are no routinely used methods 

for prospectively identifying those carrying Salmonella in their gallbladder 

ZoA et al.(2019), in the paper "Antibiotic Resistance and Typhoid" state 

that, S.Typhi can persist in water and food contaminated with human fecal 

material, but there is no environmentally adapted stage of the bacterial life-cycle 

such as the formation of spores. The persistence of S. Typhi in human 

populations is influenced by clinically silent carriage within certain individuals 

(carriers) that can be infected for months and even years with periodic shedding 

of S. Typhi into the environment in contaminated feces. Thus, antibiotic usage 

can influence both acute typhoid disease and the carrier state. In both states the 

emergence of antibiotic resistance is theoretically possible. Unlike other enteric 

bacteria, genetic and phenotypic analysis (eg, through the controlled challenge 

GSJ: Volume 9, Issue 8, August 2021 
ISSN 2320-9186 253

GSJ© 2021 
www.globalscientificjournal.com



of human volunteers) has indicated that S. Typhi is relatively poorly adapted for 

growth in the human intestine 

MATERIAL AND METHODOLOGY 

FORMULATION OF THE MODEL 

   The compartments used in this study consists of four (4) classes: S(t) is used 

to represent the number of individuals that are prone to the disease at time t or 

those susceptible to the disease. IC(t) is used to represent the number of 

asymptomatic carriers at time t. I(t) is used to represent the number of 

individuals who have been infected with the disease and are capable of 

spreading the disease to the other individuals at time t. T(t) is used to represent 

the number of individuals who have been infected with the disease and are 

treated. Those in this category are not able to be infected again or transfer to 

others. 

The schematic diagram for the modified model of the typhoid of the above 

descriptio 

 

                                                                                          𝑑𝑑2𝐼𝐼𝑐𝑐  

 

 

      

 𝑑𝑑1𝑆𝑆         ρS(βIc+γI)                                     𝑑𝑑4𝑇𝑇    
                  

b           𝛼𝛼𝐼𝐼𝑐𝑐  

        (1-ρ) S(βIc+γI) 

            𝜋𝜋𝐼𝐼 

 

 

             𝑑𝑑3𝐼𝐼 

𝑆𝑆 

𝐼𝐼𝑐𝑐  

𝑇𝑇 

𝐼𝐼 
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A susceptible individual can be infected through direct contact with an infected 

individual or carrier. Can also become carrier with probability ρ, or shows 

disease symptom with probability (1-ρ). We assume that the rate of 

transmission β for the carrier IC is higher than the rate of transmission γ for the 

symptomatically infected individual I, due to the fact that, they are more likely 

to be unaware of their condition, and therefore continue with their life regular 

behaviors. Carrier may become symptomatic at a rate α. For typhoid disease 

carriage can remain life-long. We assume b influx in to susceptible populations. 

Let’s also consider d1,d2,d3, and d4  to denote the death rates of those in the 

susceptible, asymptomatic carrier, infectious and recovered/ treated classes 

respectively. Here d1 and d4 can be considered as natural death rate of the 

susceptible and treated individuals respectively, while d2 and d3 are death rate of 

the infected and chronic individuals respectively. Symptomatically infected 

individuals recover with rate π, and we assume that the recovered individuals 

are sometimes immune. 

The model has the following  systems of differential equations: 

 
𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑

= 𝑏𝑏 − 𝑑𝑑1𝑆𝑆 − 𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼)       (3.1) 
 

𝑑𝑑𝐼𝐼𝐶𝐶
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑2 + 𝛼𝛼)𝐼𝐼𝐶𝐶      (3.2) 
 

𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

= (1 − 𝜌𝜌)𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑3 + 𝜋𝜋)𝐼𝐼 + 𝛼𝛼𝐼𝐼𝐶𝐶             (3.3) 
 

𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

=  𝜋𝜋𝐼𝐼 − 𝑑𝑑4𝑇𝑇        (3.4) 
 

Table 1: Description of Variables for model 

Variables Description 

     S(t) susceptible individuals at time t 

     IC(t) carrier infectious individuals at time t 

     I(t) infectious individuals at time t   
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     T(t) Treated individuals at time t 

 

Table 2 Description of Parameters for model 

Parameters Description 

       B rate of influx in to the susceptible populations 

     d1,d4, natural death rate of the susceptible and treated individuals 

     d2,d3  death rates of the infected and chronic individuals respectively 

      𝛽𝛽 transmission coefficient for the carrier compartment IC  

      𝛾𝛾 transmission coefficient for the symptomatically infected I 

      𝛼𝛼 rate of which carriers develop symptoms. 

      𝜋𝜋 rate of recovery 

𝜌𝜌      Probability that newly infected individual is asymptomatic 

        

 

EXISTENCE OF THE DISEASE-FREE EQUILIBRIUM (DFE) STATE 

OF THE MODIFIED MODEL 

The disease-free equilibrium is the point at which no typhoid disease is 

present in the population. Now we can recall our four (4) equations above. 

Those are (3.1) to(3.4) 

 
 

𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑

= 𝑏𝑏 − 𝑑𝑑1𝑆𝑆 − 𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼)      (3.1) 
 

𝑑𝑑𝐼𝐼𝐶𝐶
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑2 + 𝛼𝛼)𝐼𝐼𝐶𝐶      (3.2) 
 

𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

= (1 − 𝜌𝜌)𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑3 + 𝜋𝜋)𝐼𝐼 + 𝛼𝛼𝐼𝐼𝐶𝐶           (3.3) 
 

𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

=  𝜋𝜋𝐼𝐼 − 𝑑𝑑4𝑇𝑇        (3.4) 
 
At equilibrium state, the rate of change of variables represent the individuals are 

equal to zero, i.e. 
𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑 =

𝑑𝑑𝐼𝐼𝐶𝐶
𝑑𝑑𝑑𝑑 =

𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑 =

𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑 = 0 
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Therefore, equating the left hand sides (LHS) of the above equations (3.1) 

to(3.4) to zero, we have 

0 = 𝑏𝑏 − 𝑑𝑑1𝑆𝑆 − 𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼)       (3.5) 

0 = 𝜌𝜌𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑2 + 𝛼𝛼)𝐼𝐼𝐶𝐶                           (3.6) 

0 = (1 − 𝜌𝜌)𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑3 + 𝜋𝜋)𝐼𝐼 + 𝛼𝛼𝐼𝐼𝐶𝐶                (3.7) 

0 =  𝜋𝜋𝐼𝐼 − 𝑑𝑑4𝑇𝑇                     (3.8 

Now let (S, IC, I, T) = (S0, IC0, I0, T0), then equations (3.5) to (3.8) become; 

0 = 𝑏𝑏 − 𝑑𝑑1𝑆𝑆0 − 𝑆𝑆0�𝛽𝛽𝐼𝐼𝑐𝑐0 + 𝛾𝛾𝐼𝐼0�           (3.9) 

0 = 𝜌𝜌𝑆𝑆0�𝛽𝛽𝐼𝐼𝑐𝑐0 + 𝛾𝛾𝐼𝐼0� − (𝑑𝑑2 + 𝛼𝛼)𝐼𝐼𝑐𝑐0           (3.10) 

0 = (1 − 𝜌𝜌)𝑆𝑆0�𝛽𝛽𝐼𝐼𝑐𝑐0 + 𝛾𝛾𝐼𝐼0� − (𝑑𝑑3 + 𝜋𝜋)𝐼𝐼𝑐𝑐0 + 𝛼𝛼𝐼𝐼𝑐𝑐0                  (3.11) 

0 =  𝜋𝜋𝐼𝐼 − 𝑑𝑑4𝑇𝑇0            (3.12) 

 

Assume that (S0, 0, 0, T0) is an equilibrium state, then equations (3.9) to (3.12) 

we have. 

From (3.9), we have 

0 = 𝑏𝑏 − 𝑑𝑑1𝑆𝑆0        (3.13) 

Also from (3.12), we have 

0 =  −𝑑𝑑4𝑇𝑇0           (3.14) 

While the remaining equations are zero, we just ignore them! 

 

From (3.13), we have  

 0 = 𝑏𝑏 − 𝑑𝑑1𝑆𝑆0 

Or 

 𝑑𝑑1𝑆𝑆0 =  𝑏𝑏 

Dividing both side by 𝑑𝑑1, we have 
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             𝑆𝑆0 =
 𝑏𝑏
𝑑𝑑1

 

 

From (3.14), we have 

 0 =  −𝑑𝑑4𝑇𝑇0 

Or 

 −𝑑𝑑4𝑇𝑇0 = 0 

Dividing both side by −𝑑𝑑4, we have 

 𝑇𝑇0 = − 0
𝑑𝑑4

 

Therefore  

𝑇𝑇0 = 0 

Therefore at the diseases free equilibrium, the population is free of the disease 

Po = (S0, IC0, I0, T0) = (  𝑏𝑏
𝑑𝑑1

, 0, 0, 0)                                                                    (3.15) 

⎝

⎛

𝑆𝑆0
I𝐶𝐶0
𝐼𝐼0
𝑇𝑇0 ⎠

⎞ =

⎝

⎜
⎛

 𝑏𝑏
𝑑𝑑1

0
0
0 ⎠

⎟
⎞

 

BASIC REPRODUCTION NUMBER (𝐑𝐑𝟎𝟎) 

The basic reproductive number (R0) is used to measure the transmission 

potential of a disease. It is the average number of secondary infections produced 

by a typical case of an infection in a population where everyone is susceptible ( 

Rothman et al., 2013). If R0<1, each existing infection causes less than one new 

infection. In this case, the disease will decline and eventually die out. And if 

R0= 1, each existing infection causes one new infection. The disease will stay 

alive and stable, but there won’t be an outbreak or an epidemic. If R0>1, each 

existing infection causes more than one new infection. The disease will be 

transmitted between people, and there may be an outbreak or epidemic. 
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Table 3: Illustrates the growth of infection of few different 𝐑𝐑𝟎𝟎 values 

 
Now, the basic reproductive number (R0) of the model re-arranged in 

(3.16) to (3.19) was calculated using next generation matrix (NGM) as applied 

in Van den,.D, and watmought, (2005). 
𝑑𝑑𝐼𝐼𝐶𝐶
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑2 + 𝛼𝛼)𝐼𝐼𝐶𝐶                                                           (3.16) 

𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

= (1 − 𝜌𝜌)𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑3 + 𝜋𝜋)𝐼𝐼 + 𝛼𝛼𝐼𝐼𝐶𝐶                                               (3.17) 

𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑

= 𝑏𝑏 − 𝑑𝑑1𝑆𝑆 − 𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼)                                                                    (3.18) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝜋𝜋𝐼𝐼 + 𝜃𝜃𝑆𝑆 − 𝑑𝑑4𝑑𝑑                                                                               (3.19) 

From above equations, we notice that our disease classes are as follows; 
𝑑𝑑𝐼𝐼𝐶𝐶
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑2 + 𝛼𝛼)𝐼𝐼𝐶𝐶                                                           (3.20) 

𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

= (1 − 𝜌𝜌)𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑3 + 𝜋𝜋)𝐼𝐼 + 𝛼𝛼𝐼𝐼𝐶𝐶                                               (3.21) 

 

Let  

 F𝑖𝑖=�𝒅𝒅𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅𝒅𝒅
�  and   V𝑖𝑖=�𝒅𝒅𝒅𝒅𝒅𝒅

𝒅𝒅𝒅𝒅𝒅𝒅
�   

Let (IC , I) = (𝑥𝑥1 , 𝑥𝑥2) 

Then,   F=�

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥2

�      and   V= �

𝜕𝜕𝑣𝑣1
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑣𝑣1
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑣𝑣2
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑣𝑣2
𝜕𝜕𝑥𝑥2

�             (3.22)         

From equation (3.20) and (3.21) we generate 

 

𝐹𝐹𝑖𝑖 = �
𝜌𝜌𝑆𝑆(𝛽𝛽𝑥𝑥1 + 𝛾𝛾𝑥𝑥2)

 
(1 − 𝜌𝜌)𝑆𝑆(𝛽𝛽𝑥𝑥1 + 𝛾𝛾𝑥𝑥2)

�   and,  V𝑖𝑖 = �
(𝑑𝑑2 + 𝛼𝛼)𝑥𝑥1

 
−𝛼𝛼𝑥𝑥1 + (𝑑𝑑3 + 𝜋𝜋)𝑥𝑥2

�   
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Hence we obtain  
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

=  𝜌𝜌𝛽𝛽𝑆𝑆,                                                     𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

= (1 − 𝜌𝜌)𝛽𝛽𝑆𝑆, 

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2

=  𝜌𝜌𝛾𝛾𝑆𝑆,                                                    𝜕𝜕𝑓𝑓2
 𝜕𝜕𝑥𝑥2

= (1 − 𝜌𝜌)𝛾𝛾𝑆𝑆, 

Also, 
𝜕𝜕𝑣𝑣1
𝜕𝜕𝑥𝑥1

= (𝑑𝑑2 + 𝛼𝛼),           𝜕𝜕𝑣𝑣2
𝜕𝜕𝑥𝑥1

= −𝛼𝛼, 

𝜕𝜕𝑣𝑣1
𝜕𝜕𝑥𝑥2

= 0,    𝜕𝜕𝑣𝑣2
𝜕𝜕𝑥𝑥2

= (𝑑𝑑3 + 𝜋𝜋), 

Now at disease free equilibrium  𝑆𝑆 = 𝑆𝑆0 =  𝑏𝑏
𝑑𝑑1

 and by substituting the partial 

derivatives above in equation (3.22) we have,  

F=�

𝜌𝜌𝛽𝛽𝑆𝑆0                          𝜌𝜌𝛾𝛾𝑆𝑆0
 

(1 − 𝜌𝜌)𝛽𝛽𝑆𝑆0       (1− 𝜌𝜌)𝛾𝛾𝑆𝑆0  
 

�      and   V= �
(𝑑𝑑2 + 𝛼𝛼)                   0

 
−𝛼𝛼                (𝑑𝑑3 + 𝜋𝜋)  

�, 

 

Taking the inverse of V, i.e. V-1 

V-1 = 1
(𝑑𝑑2+𝛼𝛼)(𝑑𝑑3+𝜋𝜋)

 �
(𝑑𝑑3 + 𝜋𝜋)                   0

 
𝛼𝛼                 (𝑑𝑑2 + 𝛼𝛼)  

� = �

1
(𝑑𝑑2+𝛼𝛼)

                                  0
 

𝛼𝛼
(𝑑𝑑2+𝛼𝛼)(𝑑𝑑3+𝜋𝜋)

                1
(𝑑𝑑3+𝜋𝜋)

  
�, 

 

Therefore 

(FV−1)=�

𝜌𝜌𝛽𝛽𝑆𝑆0                          𝜌𝜌𝛾𝛾𝑆𝑆0
 

(1 − 𝜌𝜌)𝛽𝛽𝑆𝑆0       (1− 𝜌𝜌)𝛾𝛾𝑆𝑆0  
 

� �

1
(𝑑𝑑2+𝛼𝛼)

                                  0
 

𝛼𝛼
(𝑑𝑑2+𝛼𝛼)(𝑑𝑑3+𝜋𝜋)

                1
(𝑑𝑑3+𝜋𝜋)

  
�, 

 

                   =    

⎣
⎢
⎢
⎢
⎢
⎡
𝜌𝜌𝛽𝛽𝑆𝑆0

(𝑑𝑑2 + 𝛼𝛼) +
𝛼𝛼𝜌𝜌𝛾𝛾𝑆𝑆0            

(𝑑𝑑2 + 𝛼𝛼)(𝑑𝑑3 + 𝜋𝜋)                          
𝜌𝜌𝛾𝛾𝑆𝑆0

(𝑑𝑑3 + 𝜋𝜋)    
   
 

 
(1 − 𝜌𝜌)𝛽𝛽𝑆𝑆0

(𝑑𝑑2 + 𝛼𝛼) +
𝛼𝛼(1 − 𝜌𝜌)𝛾𝛾𝑆𝑆0

(𝑑𝑑2 + 𝛼𝛼)(𝑑𝑑3 + 𝜋𝜋)                  
(1 − 𝜌𝜌)𝛾𝛾𝑆𝑆0

(𝑑𝑑3 + 𝜋𝜋)   
⎦
⎥
⎥
⎥
⎥
⎤

 

 Using  the diagonal of the matrix. From which we obtained         
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(FV−1)  =  𝑏𝑏
  𝑑𝑑1

� 𝜌𝜌𝛽𝛽
(𝑑𝑑2+𝛼𝛼)

+ 𝜌𝜌𝛼𝛼𝛾𝛾
(𝑑𝑑2+𝛼𝛼)(𝑑𝑑3+𝜋𝜋)

+ (1−𝜌𝜌)𝛾𝛾
(𝑑𝑑3+𝜋𝜋)

 �, 

 R0 = 𝑝𝑝(FV−1) = 𝑏𝑏
  𝑑𝑑1

� 𝜌𝜌𝛽𝛽
(𝑑𝑑2+𝛼𝛼)

+ 𝜌𝜌𝛼𝛼𝛾𝛾
(𝑑𝑑2+𝛼𝛼)(𝑑𝑑3+𝜋𝜋)

+ (1−𝜌𝜌)𝛾𝛾
(𝑑𝑑3+𝜋𝜋)

 � ,            (3.23) 

Where p is the spectral radius 

 

STABILITY ANALYSIS OF DISEASE-FREE EQUILIBRUIM (DFE) 

STATE 

             We shall examine the local stability of the disease-free equilibrium 

Po(3.15) 

Using the method of linearized stability,  

Now, let 

𝑓𝑓1 = 𝑏𝑏 − 𝑑𝑑1𝑆𝑆 − 𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼)          (3.24) 

𝑓𝑓2 = 𝜌𝜌𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑2 + 𝛼𝛼)𝐼𝐼𝐶𝐶             (3.25) 

𝑓𝑓3 = (1 − 𝜌𝜌)𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑3 + 𝜋𝜋)𝐼𝐼 + 𝛼𝛼𝐼𝐼𝐶𝐶          (3.26)  

𝑓𝑓4 =  𝜋𝜋𝐼𝐼 − 𝑑𝑑4𝑇𝑇            (3.27) 

Then the jacobian matrix associated with (3.1) to (3.4) at the disease-free 

equilibrium state is given by  

J0=

⎣
⎢
⎢
⎢
⎢
⎢
⎡−𝑑𝑑1                 − 𝛽𝛽 𝑏𝑏

  𝑑𝑑1
                                     − 𝛾𝛾 𝑏𝑏

  𝑑𝑑1
                            0  

0                 𝜌𝜌𝛽𝛽 𝑏𝑏
  𝑑𝑑1

− (𝑑𝑑2 + 𝛼𝛼)                         𝜌𝜌𝛾𝛾 𝑏𝑏
  𝑑𝑑1

                           0 

 0               (1 − 𝜌𝜌)𝛽𝛽 𝑏𝑏
  𝑑𝑑1

+ 𝛼𝛼              (1− 𝜌𝜌)𝛾𝛾 𝑏𝑏
  𝑑𝑑1

− (𝑑𝑑3 + 𝜋𝜋)        0 
0                            0                                        0                                 − 𝑑𝑑4

     

  

⎦
⎥
⎥
⎥
⎥
⎥
⎤

(3.28) 

 

Now from the matrix (3.28), using the characteristics equation det(J-𝜆𝜆I)=0, we 

notice that –d1, -d2 are the roots and the remaining eigenvalues are found from 

the quadratic equation below 

 

𝜆𝜆2 + 𝐴𝐴𝜆𝜆 + 𝐵𝐵 = 0           (3.29) 

Where  

𝐴𝐴 = −� 𝜌𝜌𝛽𝛽
𝑏𝑏

  𝑑𝑑1
− (𝑑𝑑2 + 𝛼𝛼) + (1 − 𝜌𝜌)𝛾𝛾

𝑏𝑏
  𝑑𝑑1

− (𝑑𝑑3 + 𝜋𝜋)� 
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And  

𝐵𝐵 = ��𝜌𝜌𝛽𝛽 𝑏𝑏
  𝑑𝑑1

− (𝑑𝑑2 + 𝛼𝛼)��(1 − 𝜌𝜌)𝛾𝛾 𝑏𝑏
  𝑑𝑑1

− (𝑑𝑑3 + 𝜋𝜋)�� − 𝜌𝜌𝛾𝛾 𝑏𝑏
  𝑑𝑑1

�(1 −

𝜌𝜌)𝛽𝛽 𝑏𝑏
  𝑑𝑑1

+ 𝛼𝛼 �  

From Routh Hurwitz criterion above equation have negative real roots provided 

𝐴𝐴 > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝐵𝐵 > 0 

Therefore 

𝐴𝐴 > 0 𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑ℎ𝑎𝑎𝑑𝑑 

− � 𝜌𝜌𝛽𝛽 𝑏𝑏
  𝑑𝑑1

− (𝑑𝑑2 + 𝛼𝛼) + (1− 𝜌𝜌)𝛾𝛾 𝑏𝑏
  𝑑𝑑1

− (𝑑𝑑3 + 𝜋𝜋)� > 0  

Or 
𝑏𝑏

  𝑑𝑑1
(𝜌𝜌𝛽𝛽 + (1 − 𝜌𝜌)𝛾𝛾) − [(𝑑𝑑2 + 𝛼𝛼) + (𝑑𝑑3 + 𝜋𝜋)] < 0  

From which we get 
𝑏𝑏

  𝑑𝑑1
[(𝑑𝑑2 + 𝛼𝛼) + (𝑑𝑑3 + 𝜋𝜋)] � (𝜌𝜌𝛽𝛽+(1−𝜌𝜌)𝛾𝛾)

(𝑑𝑑2+𝛼𝛼)+(𝑑𝑑3+𝜋𝜋)
− 1� < 0  

Or  
𝑏𝑏

  𝑑𝑑1
[(𝑑𝑑2 + 𝛼𝛼) + (𝑑𝑑3 + 𝜋𝜋)](𝑑𝑑 − 1) < 0 , provided 𝑑𝑑 < 1 

Where  

𝑑𝑑 = (𝜌𝜌𝛽𝛽+(1−𝜌𝜌)𝛾𝛾)
(𝑑𝑑2+𝛼𝛼)+(𝑑𝑑3+𝜋𝜋)

  

 

Similarly for,  𝐵𝐵 > 0, implies 𝑑𝑑 < 1. 

 

RESULT AND DISCUSSION  

 VALUES OF VARIABLES AND PARAMETER  

             The results of this research will be obtained by using defined values of 

variables and parameters presented in the table 4 and table 3 respectively, some 

of these data were collected from my case of study “the General Sani Abacha 

Specialist Hospital, Damaturu Yobe state”. We will also use these values of 

variables and parameters to draw a graph of four (4) difference experiments. 
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Table 4: Parameter value for numerical experiments 
      Experiments 

 

Parameters 

1 2 3 4 Source 

𝑏𝑏 70 85 100 115 Guo et al (2006) 

𝑑𝑑1  0 0.15 0.15 0.15 Moffat et al (2014) 

𝑑𝑑3 0 0.1503 0.1503 0.1503 Moffat et al (2014) 

𝛽𝛽 0 0.01 0.009 0.008 Assumed 

𝜋𝜋 0 0.5 1.8 3.25 Assumed 

𝜌𝜌 0 0.4 0.4 0.4 Assumed 

𝛼𝛼 0 0.0123 0.0123 0.0123 Moffat et al (2014) 

𝛾𝛾 0 0.0113 0.0113 0.0123 Moffat et al (2014) 

d2 0 0.25 0.20 0.15 Assumed  

d4 0 0.001 0.02 0.1 Assumed  

Where, 

𝑏𝑏 = is a rate of influx in to the susceptible populations 
d1,d4, =natural death rate of the susceptible and treated individuals 
d2,d3= death rates of the infected and chronic individuals respectively 
𝛽𝛽 = transmission coefficient for the carrier compartment I  
𝛾𝛾 =transmission coefficient for the symptomatically infected I 
 𝛼𝛼 =rate of which carriers develop symptoms. 
𝜋𝜋 = rate of recovery 
𝜌𝜌 = Probability that newly infected individual is asymptomatic 
 
Table 5: Variables value for numerical experiments 

T 0 1 2 3 

S 0 100 200 300 

IC 60 50 40 30 

I 90 70 50 30 
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Where, 
T= Time in Years 
S= susceptible individuals 
IC= carrier infectious individuals 
I= infectious individuals 
T= Treated individuals 
Solution of the equation of the model 

         Now, let us use our model equations to solve for each variable of the 

model to know the relationship andchanges in the population of the individuals 

for three years in four difference experiments, 

 

From equation (3.1) 
𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑

= 𝑏𝑏 − 𝑑𝑑1𝑆𝑆 − 𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼)            

by separation of variable  

𝑑𝑑𝑆𝑆 = [𝑏𝑏 − 𝑑𝑑1𝑆𝑆 − 𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼)] 𝑑𝑑𝑑𝑑 

 

Integrating both side, we have 

�𝑑𝑑𝑆𝑆 = �[𝑏𝑏 − 𝑑𝑑1𝑆𝑆 − 𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼)] 𝑑𝑑𝑑𝑑 

Implies 

             𝑆𝑆(𝑑𝑑) = [𝑏𝑏 − 𝑑𝑑1𝑆𝑆 − 𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼)]𝑑𝑑                (4.1) 

By using the value of parameters and variable of table 4 and table 5, and 

considering experiments 

 

             𝑆𝑆(𝑑𝑑) = [𝑏𝑏 − 𝑑𝑑1𝑆𝑆 − 𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼)]𝑑𝑑 

When t=0 

 𝑆𝑆(0) = [70 − 0 × 0 − 0(0 × 0 + 0 × 0)]0 

           = 0 

Next  

             𝑆𝑆(𝑑𝑑) = [𝑏𝑏 − 𝑑𝑑1𝑆𝑆 − 𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼)]𝑑𝑑 

When t=1 

T 0 100 120 140 
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𝑆𝑆(1) = [85 − 0.4 × 100 − 100(0.01 × 50 + 0.0113 × 70)]1 

        = [85 − 15 − 100(0.5 + 0.791)]1 

        = [70 − 129.1]1 

         = −59.1   ≈= −59 

Next  

             𝑆𝑆(𝑑𝑑) = [𝑏𝑏 − 𝑑𝑑1𝑆𝑆 − 𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼)]𝑑𝑑 

When t=2 

 𝑆𝑆(2) = [100− 0.15 × 200 − 200(0.009 × 40 + 0.0113 × 50)]2  

           = [100 − 30 − 200(0.36 + 0.565)]2 

           = [100 − 30 − 138]2 

           = −230 

Next  

             𝑆𝑆(𝑑𝑑) = [𝑏𝑏 − 𝑑𝑑1𝑆𝑆 − 𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼)]𝑑𝑑 

When t=3 

    𝑆𝑆(3) = [115 − 0.15 × 300− 300(0.008 × 30 + 0.0113 × 30)]3 

             = [115− 45 − 300(0.24 + 0.339)]3 

             = [115− 45 − 173.7]3 

             = −311.1 ≈= −311  

We see that base  on the above solution susceptible individuals decreases every 

day anytime,  we can also see that at the initial years of treatment the value of 

susceptible is  0 this showing us that there is no treatment at that time, and also 

after one years it start decreasing  the values, this  also showing us  that the 

susceptible individuals are responding to treatment  

 

From (3.2) 
𝑑𝑑𝐼𝐼𝐶𝐶
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑2 + 𝛼𝛼)𝐼𝐼𝐶𝐶           

 

by separation of variable  

𝑑𝑑𝐼𝐼𝐶𝐶 = [𝜌𝜌𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑2 + 𝛼𝛼)𝐼𝐼𝐶𝐶]𝑑𝑑𝑑𝑑          
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Integrating both side, we have 

�𝑑𝑑𝐼𝐼𝐶𝐶 = �[𝜌𝜌𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑2 + 𝛼𝛼)𝐼𝐼𝐶𝐶]𝑑𝑑𝑑𝑑          

 

Implies  

𝐼𝐼𝐶𝐶(𝑑𝑑) = [𝜌𝜌𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑2 + 𝛼𝛼)𝐼𝐼𝐶𝐶]𝑑𝑑              (4.2) 

 

By using the value of parameters and variable of table 4 and table 5, and 

considering experiments 

When t=0 

𝐼𝐼𝐶𝐶(0) = [0 × 0(0 × 60 + 0 × 90) − (0 + 0)0]0 

           = 0 

Next  

𝐼𝐼𝐶𝐶(𝑑𝑑) = [𝜌𝜌𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑2 + 𝛼𝛼)𝐼𝐼𝐶𝐶]𝑑𝑑 

When t=1 

𝐼𝐼𝐶𝐶(1) = [0.4 × 100(0.01 × 50 + 0.0113 × 70) − (0.25 + 0.0123)50]1 

            = [40(0.5 + 0.791) − (0.2623)50]1 

            = [51.65− 13.115]1 

            = 38.115 ≈= 38 

Next  

𝐼𝐼𝐶𝐶(𝑑𝑑) = [𝜌𝜌𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑2 + 𝛼𝛼)𝐼𝐼𝐶𝐶]𝑑𝑑 

When t=2 

𝐼𝐼𝐶𝐶(2) = [0.4 × 200(0.009 × 40 + 0.0113 × 50) − (0.20 + 0.0123)40]2 

           = [80(0.36 + 0.565) − (0.2123)40]2 

           = [(74) − (8.492)]2 

           = 131.016 ≈= 131 

Next  

𝐼𝐼𝐶𝐶(𝑑𝑑) = [𝜌𝜌𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑2 + 𝛼𝛼)𝐼𝐼𝐶𝐶]𝑑𝑑 

When t=3 

𝐼𝐼𝐶𝐶(3) = [0.4 × 300(0.008 × 30 + 0.0113 × 30) − (0.15 + 0.0123)30]3 

          = [120(0.25 + 0.339) − (0.1623)30]3 
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          = [(70.68)− (4.869)]3 

          = [(70.68)− (4.869)]3 

          = 197.433 ≈= 197 

We see that base on the above solution asymptomatic carrier individuals 

increases, that means individuals are responding treatment since there is 

decreasing in susceptible individuals and increasing in carrier individuals 

 

From equation (3.3) 
𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑 = (1 − 𝜌𝜌)𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑3 + 𝜋𝜋)𝐼𝐼 + 𝛼𝛼𝐼𝐼𝐶𝐶  

 

by separation of variable  

𝑑𝑑𝐼𝐼 = [(1− 𝜌𝜌)𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑3 + 𝜋𝜋)𝐼𝐼 + 𝛼𝛼𝐼𝐼𝐶𝐶] 𝑑𝑑𝑑𝑑 

 

Integrating both side, we have 

�𝑑𝑑𝐼𝐼 = �[(1 − 𝜌𝜌)𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑3 + 𝜋𝜋)𝐼𝐼 + 𝛼𝛼𝐼𝐼𝐶𝐶] 𝑑𝑑𝑑𝑑 

 

Implies 

𝐼𝐼(𝑑𝑑) = [(1− 𝜌𝜌)𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑3 + 𝜋𝜋)𝐼𝐼 + 𝛼𝛼𝐼𝐼𝐶𝐶] 𝑑𝑑                                       (4.3) 

 

By using the value of parameters and variable of table 4 and table 5, and 

considering experiments 

 

𝐼𝐼(𝑑𝑑) = [(1− 𝜌𝜌)𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑3 + 𝜋𝜋)𝐼𝐼 + 𝛼𝛼𝐼𝐼𝐶𝐶] 𝑑𝑑                                        

When t=0 

𝐼𝐼(0) = [(1 − 𝜌𝜌)𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑3 + 𝜋𝜋)𝐼𝐼 + 𝛼𝛼𝐼𝐼𝐶𝐶] 0 

        = 0 

Next  

𝐼𝐼(𝑑𝑑) = [(1− 𝜌𝜌)𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑3 + 𝜋𝜋)𝐼𝐼 + 𝛼𝛼𝐼𝐼𝐶𝐶] 𝑑𝑑 

When t=1 
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𝐼𝐼(1) = [(0.6)100(0.5 + 0.791)− (0.1503 + 0.5)70 + 0.0123 × 50] 1 

          = [(77.46)− (45.521) + 0.615] 1 

          = 32.554 ≈= 33 

Next  

𝐼𝐼(𝑑𝑑) = [(1− 𝜌𝜌)𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑3 + 𝜋𝜋)𝐼𝐼 + 𝛼𝛼𝐼𝐼𝐶𝐶] 𝑑𝑑 

When t=2 

𝐼𝐼(2) = [(0.6)200(0.36 + 0.565) − (0.1503 + 1.8)50 + 0.0123 × 40] 2 

         = [(111)− (97.515) + 0.492] 2 

         = 27.954 ≈ 28 

Next  

𝐼𝐼(𝑑𝑑) = [(1− 𝜌𝜌)𝑆𝑆(𝛽𝛽𝐼𝐼𝐶𝐶 + 𝛾𝛾𝐼𝐼) − (𝑑𝑑3 + 𝜋𝜋)𝐼𝐼 + 𝛼𝛼𝐼𝐼𝐶𝐶] 𝑑𝑑 

When t=3 

𝐼𝐼(3) = [(0.6)300(0.24 + 0.339) − (0.1503 + 3.25)30 + 0.0123 × 30] 3 

         = [(104.22) − (102.009) + 0.369] 3 

         = 7.74 ≈ 8 

From the above solution we see that the population of infected individuals 

decreases very fast, that means there is a very high rate of treatment. 

 

From (3.4) 
𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

=  𝜋𝜋𝐼𝐼 − 𝑑𝑑4𝑇𝑇  

 

by separation of variable  

𝑑𝑑𝑇𝑇 = ( 𝜋𝜋𝐼𝐼 − 𝑑𝑑4𝑇𝑇)𝑑𝑑𝑑𝑑  

 

Integrating both side we have 

∫𝑑𝑑𝑇𝑇 = ∫( 𝜋𝜋𝐼𝐼 − 𝑑𝑑4𝑇𝑇)𝑑𝑑𝑑𝑑  

 

Implies  

𝑇𝑇(𝑑𝑑) = ( 𝜋𝜋𝐼𝐼 − 𝑑𝑑4𝑇𝑇)𝑑𝑑                 (4.4) 
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By using the value of parameters and variable of table 4 and table 5, and 

considering experiments 

𝑇𝑇(𝑑𝑑) = ( 𝜋𝜋𝐼𝐼 − 𝑑𝑑4𝑇𝑇)𝑑𝑑 

When t=0 

𝑇𝑇(0) = ( 0 × 90 − 0 × 0)0 

         = 0 

Next  

𝑇𝑇(𝑑𝑑) = ( 𝜋𝜋𝐼𝐼 − 𝑑𝑑4𝑇𝑇)𝑑𝑑 

When t=1  

𝑇𝑇(1) = ( 0.5 × 70 − 0.001 × 100)1 

          = ( 35− 0.1)1 

          = 34.9 ≈ = 35 

Next  

𝑇𝑇(𝑑𝑑) = ( 𝜋𝜋𝐼𝐼 − 𝑑𝑑4𝑇𝑇)𝑑𝑑 

When t=2  

𝑇𝑇(2) = ( 1.8 × 50 − 0.02 × 120)2 

        = ( 90− 2.4)2 

        = 175.2 ≈ = 175  

Next  

𝑇𝑇(𝑑𝑑) = ( 𝜋𝜋𝐼𝐼 − 𝑑𝑑4𝑇𝑇)𝑑𝑑 

When t=3 

𝑇𝑇(3) = ( 3.25 × 30 − 0.1 × 140)3 

           = ( 97.5− 14)3 

           = 250.5 ≈ = 250 

From the above solution we see that the population of treated  individuals 

increases very fast it definitely  against the population of infected individuals 

This is showing us that infected individuals are transferring to treated 
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Graphs of the model 

By using the value in table 4 we can represent our results graphically for 

each population as follow; 

Remembering our table 5 

 Table of variables value for numerical experiments 

T 0 1 2 3 

S 0 100 200 300 

IC 60 50 40 30 

I 90 70 50 30 

T 0 100 120 140 

 

Now 

Table 6: showing the value of susceptible individuals at time (T) 

T 0 1 2 3 

S 0 100 200 300 

 Where, 

𝑺𝑺= Susceptible individuals 
T=Time (Years) 
 

Fig 1.2 
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Time (Years) 

Fig 1.2 shows the graph of susceptible individuals against time, it also means 

that the susceptible population increases with time. 

 

Table 7: shows the value of carrier individuals at time (T) 

T 0 1 2 3 

IC 60 50 40 30 

Where, 

𝑰𝑰𝑪𝑪 =Carrier individuals 
T=Time (Years) 
 
 
 
 
 
 
Fig 1.3 

 
Time (Years) 

Fig 1.3 shows the graph of carrier population against time, it also shows that the 

population of carrier individuals decreases due to the fact that some transferring 

to treated  
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Table 8: shows the value of infected individuals at time (T) 

T 0 1 2 3 

I 90 70 50 30 

Where, 

𝑰𝑰 =Infected individuals 
T=Time (Years) 
 
 
 
 
 
 
 
 
Fig 1.4 

 
Time (Years) 

Fig 1.4 shows the graph of infected population against time, it also shows that 

infected populations decrease, are getting treatment and transferring to treated 

individuals.  
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Table 9: shows the value of treated individuals at time (T) 

 

where, 

T=Treated individuals 
T=Time (Years) 
 

Fig 1.5 

 
Time (Years) 

Fig 1.5 shows the graph of treated population against time, it also shows that 

treated population increases very high all those individuals i.e. infected and 

carrier are gradually becoming very safe by accepting treatments. That means 

treatment is the better way to eradicate typhoid fever  

 

SUMMARY, CONCLUSION AND RECOMMENDATION 

SUMMARY 

In this research, we have studied the effect of carriers and treatment on 

the transmission dynamics of typhoid fever. A disease-free equilibrium was 

obtained and its stability was analyzed using linearized method. We computed 

the basic reproduction number (R0) in terms of the model parameters.  

0

20

40

60

80

100

120

140

160

0 1 2 3

Treated Individuals

T 0 1 2 3 

T 0 100 120 140 

GSJ: Volume 9, Issue 8, August 2021 
ISSN 2320-9186 273

GSJ© 2021 
www.globalscientificjournal.com



It was also shown that for the threshold parameter, R0 < 1, the disease-free 

equilibrium state is locally asymptotically stable and the disease eventually 

disappears from the population (i.e. dies out). If R0 >1, the disease-free 

equilibrium state is unstable, that means the disease can spread in the population 

(endemic). In order to maintain R0 below 1, sensitivity analysis suggested that 

an increase of carriers through 𝑝𝑝 will lead to high prevalence in the community. 

The infectious population is responsive in both changes in treatment, increasing 

the level of treatment through 𝜋𝜋 causes the infectious population to drop. 

However, this decrease in the infectious group becomes much less significant as 

we move from low to high levels of carriers. In other words, treatment can be 

effective in reducing the infected population if the number of carriers is small.  

 

 

 In our model, the following results were obtained; 

 Given 𝑝𝑝, 𝑏𝑏,𝛽𝛽,𝛼𝛼, 𝛾𝛾,𝜋𝜋,𝑑𝑑1,𝑑𝑑2,𝑑𝑑3 > 0 there exists a disease free state of 

the model given by      

                        𝑃𝑃0 = �  𝑏𝑏
𝑑𝑑1

, 0,0,0� 

 

  R0 was found using the next generation method   

  R0 < 1. 

 Solution of the equation of the model, we were solved the equations of 

the model for all individual governing this research. We solved the 

equation for difference time and in difference experiments   

 We carried out numerical experiments of solutions of the model using 

the model parameters of interest and we also drew the graphs that 

displayed the results for each compartment of the model 

 

 CONCLUSION 

In this research work, we formulate a model to incorporate treatment in 

this dynamics of the disease. we studied the modified model to investigate the 
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effect of treatment on the dynamics of the infection. The existence and stability 

of a disease-free equilibrium state of modified model was also established and 

was found to be locally asymptomatically stable. The basic reproduction 

number RO that governs the disease transmission was computed by the next 

generation operator method. 

Numerical experiments using published data and the data  collected from 

General  Sani Abacha Specialist hospital damaturu, show that treatment can be 

effective in reducing the number of infected people as well as the number of 

carriers. The sensitivity analysis of the model parameters, using Ro also 

indicates that the number of carriers have high impact on the dynamics of the 

disease. 

 

RECOMMENDATION 

The analytical and numerical studies revealed that there is a possibility of 

controlling/eradication of typhoid fever, provided that the basic reproduction 

number 𝑑𝑑o is less than one. It was also found that, 𝑎𝑎𝑎𝑎𝑑𝑑 𝜋𝜋 are very most 

important parameters in the transmission of the disease. I therefore recommend 

as follows:- 

1. There should be proper disposal of the faeces and urine especially the 

people using bushes hill as toilets and rivers in town as urinals to prevent 

the spread of the disease. 

2. Domestic water should be boiled or chlorinated before drinking to kill the 

bacteria. 

3. Fruits should be washed with clean water before being eaten. 

4. Food handlers should be clean, and should be subjected to regular 

medical check-ups. 

5. More research be carried out to identify carriers and find appropriate 

ways of handling them so as to reduce their role in the dynamics of the 

infection. 
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